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Chapter 2 describes the four major components
of modern coupled climate models: atmosphere,
ocean, land surface, and sea ice. The develop-
ment of each of these individual components
raises important questions as to how key phys-
ical processes are represented in models, and
some of these questions are discussed in this re-
port. Furthermore, strategies used to couple the
components into a climate system model are de-
tailed. Development paths for the three U.S.
modeling groups that contributed to the 2007
Intergovernmental Panel on Climate Change
(IPCC) Scientific Assessment of Climate
Change (IPCC 2007) serve as examples. Expe-
rience and expert judgment are essential in con-
structing and evaluating a climate modeling
system, so multiple modeling approaches are

still needed for full scientific evaluation of the
state of the science.

The set of most recent climate simulations, re-
ferred to as CMIP3 models and utilized heavily
in Working Group 1 and 2 reports of the Fourth
IPCC Assessment, have received unprecedented
scrutiny by hundreds of investigators in various
areas of expertise. Although a number of sys-
tematic biases are present across the set of mod-
els, more generally the simulation strengths and
weaknesses, when compared against the current
climate, vary substantially from model to
model. From many perspectives, an average
over the set of models clearly provides climate
simulation superior to any individual model,
thus justifying the multimodel approach in
many recent attribution and climate projection
studies.

Climate modeling has been steadily improving
over the past several decades, but the pace has
been uneven because several important aspects
of the climate system present especially severe
challenges to the goal of simulation.

What are the major components and
processes of the climate system that are
included in present state-of-the-science
climate models, and how do climate mod-
els represent these aspects of the climate
system?
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Scientists extensively use mathematical models of Earth’s climate, executed

on the most powerful computers available, to examine hypotheses about

past and present-day climates. Development of climate models is fully con-

sistent with approaches being taken in many other fields of science deal-

ing with very complex systems. These climate simulations provide a

framework within which enhanced understanding of climate-relevant

processes, along with improved observations, are merged into coherent

projections of future climate change. This report describes the models and

their ability to simulate current climate.

The science of climate modeling has matured through finer spatial resolution, the inclusion of a greater number of physical

processes, and comparison to a rapidly expanding array of observations. These models have important strengths and limita-

tions. They successfully simulate a growing set of processes and phenomena; this set intersects with, but does not fully cover,

the set of processes and phenomena of central importance for attribution of past climate changes and the projection of fu-

ture changes. Following is a concise summary of the information in this report, organized around questions from the “Prospec-

tus,” which motivated its preparation, and focusing on these strengths and weaknesses.
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The Earth’s radiant energy balance at the top of
the atmosphere helps to determine its climate.
Chapter 2 contains a brief description of energy-
transfer simulation within models, particularly
within the atmospheric component. More im-
portant, Chapter 4 includes an extensive dis-
cussion about radiative forcing of climate
change and climate sensitivity. The response of
global mean temperature to a doubling of car-
bon dioxide remains a useful measure of climate
sensitivity. The equilibrium response—the re-
sponse expected after waiting long enough
(many hundreds of years) for the system to
reequilibrate—is the most commonly quoted
measure. Remaining consistent for three
decades, the range of equilibrium climate sen-
sitivity obtained from models is roughly con-
sistent with estimates from observations of
recent and past climates. The canonical three-
fold range of uncertainty, 1.5 to 4.5°C, has
evolved very slowly. The lower limit has been
nearly unchanged over time, with very few re-
cent models below 2°. Difficulties in simulat-
ing Earth’s clouds and their response to climate
change are the fundamental reasons preventing
a reduction in this range in model-generated cli-
mate sensitivity.

Other common measures of climate sensitivity
measure the climate response on time scales
shorter than 100 years. By these measures there
is considerably less spread among the models—
roughly a factor of two rather than three. The
range still is considerable and is not decreasing
rapidly, due in part to difficulties in cloud sim-
ulation but also to uncertainty in the rate of heat
uptake by the oceans. This uncertainty rises in
importance when considering the responses on
these shorter time scales.

Climate sensitivity in models is subjected to
tests using observational constraints. Tests in-
clude climate response to volcanic eruptions;
aspects of internal climate variability that pro-
vide information on the strength of climatic
“restoring forces”; the response to the 11-year

cycle in solar irradiance; paleoclimatic infor-
mation, particularly from the peak of the last Ice
Age some 20,000 years ago; aspects of the sea-
sonal cycle; and the magnitude of observed
warming over the past century. Because each
test is subject to limitations in data and compli-
cations from feedbacks in the system, they do
not provide definitive tests of models’ climate
sensitivity in isolation. Studies in which multi-
ple tests of model climate responses are con-
sidered simultaneously are essential when
analyzing these constraints on sensitivity.

Improvements in our confidence in estimates of
climate sensitivity are most likely to arise from
new data streams such as the satellite platforms
now providing a first look at the three-dimen-
sional global distributions of clouds. New and
very computationally intensive climate model-
ing strategies that explicitly resolve some of the
smaller scales of motion influencing cloud
cover and cloud radiative properties also prom-
ise to improve cloud simulations.

Chapter 1 provides an overview of improvement
in models in both completeness and in the abil-
ity to simulate observed climate. Climate mod-
els are compared to observations of the mean
climate in a multitude of ways, and their ability
to simulate observed climate changes, particu-
larly those of the past century, have been exam-
ined extensively. A discussion of metrics that
may be used to evaluate model improvement
over time is included at the end of Chapter 2,
which cautions that no current model is supe-
rior to others in all respects, but rather that dif-
ferent models have differing strengths and
weaknesses.

As discussed in Chapter 5, climate models de-
veloped in the United States and around the
world show many consistent features in their
simulations and projections for the future. Ac-
curate simulation of present-day climatology for
near-surface temperature and precipitation is
necessary for most practical applications of cli-

How uncertain are climate model results?
In what ways has uncertainty in model-
based simulation and prediction changed
with increased knowledge about the cli-
mate system?

How are changes in the Earth’s energy
balance incorporated into climate mod-
els? How sensitive is the Earth’s (mod-
eled) climate to changes in the factors
that affect the energy balance?
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mate modeling. The seasonal cycle and large-
scale geographical variations of near-surface
temperature are indeed well simulated in recent
models, with typical correlations between mod-
els and observations of 95% or better.

Climate model simulation of precipitation has
improved over time but is still problematic. Cor-
relation between models and observations is 50
to 60% for seasonal means on scales of a few
hundred kilometers. Comparing simulated and
observed latitude-longitude precipitation maps
reveals similarity of magnitudes and patterns in
most regions of the globe, with the most strik-
ing disagreements occurring in the tropics. In
most models, the appearance of the Inter-Trop-
ical Convergence Zone of cloudiness and rain-
fall in the equatorial Pacific is distorted, and
rainfall in the Amazon Basin is substantially un-
derestimated. These errors may prove conse-
quential for a number of model predictions,
such as forest uptake of atmospheric CO2.

Simulation of storms and jet streams in middle
latitudes is considered one of the strengths of
atmospheric models because the dominant
scales involved are reasonably well resolved. As
a consequence, there is relatively high confi-
dence in the models’ ability to simulate changes
in these extratropical storms and jet streams as
the climate changes. Deficiencies that still exist
may be due partly to insufficient resolution of
features such as fronts, to errors in the forcing
terms from moist physics, or to inadequacies in
simulated interactions between the tropics and
midlatitudes or between the stratosphere and the
troposphere. These deficiencies are still large
enough to impact ocean circulation and some
regional climate simulations and projections.

The quality of ocean climate simulations has
improved steadily in recent years, owing to bet-
ter numerical algorithms and more realistic as-
sumptions concerning the mixing occurring on
scales smaller than the models’ grid. Many of
the CMIP3 class of models are able to maintain
an overturning circulation in the Atlantic with
roughly the observed strength without the arti-
ficial correction to air-sea fluxes commonly
used in previous generations of models, thus
providing a much better foundation for analysis
of the circulation’s stability. Circulation in the
Southern Ocean, thought to be vitally important
for oceanic uptake of carbon dioxide from the

atmosphere, is sensitive to deficiencies in sim-
ulated winds and salinities, but a subset of mod-
els is producing realistic circulation in the
Southern Ocean as well.

Models forced by the observed well-mixed
greenhouse gas concentrations, volcanic
aerosols, estimates of variations in solar energy
incidence, and anthropogenic aerosol concen-
trations are able to simulate the recorded 20th
Century global mean temperature in a plausible
way. Solar variations, observed through direct
satellite measurements for the last few decades,
do not contribute significantly to warming dur-
ing that period. Solar variations early in the 20th
Century are much less certain but are thought
to be a potential contributor to warming in that
period.

Uncertainties in the climatic effects of man-
made aerosols (liquid and solid particles sus-
pended in the atmosphere) constitute a major
stumbling block in quantitative attribution stud-
ies and in attempts to use the observational
record to constrain climate sensitivity. We do
not know how much warming due to green-
house gases has been cancelled by cooling due
to aerosols. Uncertainties related to clouds in-
crease the difficulty in simulating the climatic
effects of aerosols, since these aerosols are
known to interact with clouds and potentially
can change cloud radiative properties and cloud
cover.

The possibility that natural variability has been
a significant contributor to the detailed time
evolution seen in the global temperature record
is plausible but still difficult to address with
models, given the large differences in charac-
teristics of the natural decadal variability be-
tween models. While natural variability may
very well be relevant to observed variations on
the scale of 10 to 30 years, no models show any
hint of generating large enough natural, un-
forced variability on the 100-year time scale to
compete with explanations that the observed
century-long warming trend has been predomi-
nantly forced.

The observed southward displacement of the
Southern Hemisphere storm track and jet
stream in recent decades is reasonably well sim-
ulated in current models, which show that the
displacement is due partly to greenhouse gases
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but also partly to the presence of the stratos-
pheric ozone hole. Circulation changes in the
Northern Hemisphere over the past decades
have proven more difficult to capture in current
models, perhaps because of more complex in-
teractions between the stratosphere and tropo-
sphere in the Northern Hemisphere.

Observations of ocean heat uptake are begin-
ning to provide a direct test of aspects of the
ocean circulation directly relevant to climate
change simulations. Coupled models provide
reasonable simulations of observed heat uptake
in the oceans but underestimate the observed
sea-level rise over the past decades.

Model simulations of trends in extreme weather
typically produce global increases in extreme
precipitation and severe drought, with decreases
in extreme minimum temperatures and frost
days, in general agreement with observations.

Simulations from different state-of-the-science
models have not fully converged, however, since
different groups approach uncertain model as-
pects in distinctive ways. This absence of con-
vergence is one useful measure of the state of
climate simulation; convergence is to be ex-
pected once all climate-relevant processes are
simulated in a convincing physically based
manner. However, measuring the quality of cli-
mate models so the metric used is directly rele-
vant to our confidence in the models’
projections of future climate has proven diffi-
cult. The most appropriate ways to translate
simulation strengths and weaknesses into con-
fidence in climate projections remain a subject
of active research.

Simulation of climate variations also is de-
scribed in Chapter 5. Simulations of El Niño os-
cillations, which have improved substantially in
recent years, provide a significant success story
for climate models. Most current models spon-
taneously generate El Niño–Southern Oscilla-
tion variability, albeit with varying degrees of
realism. Oscillation spatial structure and dura-
tion are impressive in a model subset but with a

tendency toward too short a period. Bias in the
Inter-Tropical Convergence Zone (ITCZ) in
coupled models is a major factor preventing fur-
ther improvement in these models. Projections
for future El Niño variability and the state of the
Pacific Ocean are centrally important for re-
gional climate change projections throughout
the tropics and in North America.

Other aspects of the tropical simulations in cur-
rent models remain inadequate. The Madden-
Julian Oscillation, a feature of the tropics in
which precipitation is organized by large-scale
eastward-propagating features with periods of
roughly 30 to 60 days, is a useful test of simu-
lation credibility. Model performance using this
measure is still unsatisfactory. The “double
ITCZ–cold tongue bias,” in which water is ex-
cessively cold near the equator and precipitation
splits artificially into two zones straddling the
equator, remains as a persistent bias in current
coupled atmosphere-ocean models. Projections
of tropical climate change are affected adversely
by these deficiencies in simulations of the or-
ganization of tropical convection. Models typi-
cally overpredict light precipitation and
underpredict heavy precipitation in both the
tropics and middle latitudes, creating potential
biases when studying extreme events. Tropical
cyclones are poorly resolved by the current gen-
eration of global models, but recent results with
high-resolution atmosphere-only models and
dynamical downscaling provide optimism that
the simulation of tropical cyclone climatology
will advance rapidly in coming years, as will
our understanding of observed variations and
trends.

The quality of simulations of low-frequency
variability on decadal to multidecadal time
scales varies regionally and also from model to
model. On average, models do reasonably well
in the North Pacific and North Atlantic. In other
oceanic regions, lack of data contributes to un-
certainty in estimating simulation quality at
these low frequencies. A dominant mode of
low-frequency variability in the atmosphere,
known as northern and southern annular modes,
is very well captured in current models. These
modes involve north-south displacements of the
extratropical storm track and have dominated
observed atmospheric circulation trends in re-
cent decades. Because of their ability to simu-
late annular modes, global climate models do

How well do climate models simulate
natural variability and how does variabil-
ity change over time?



5

Climate Models: An Assessment of Strengths and Limitations

fairly well with interannual variability in polar
regions of both hemispheres. They are less suc-
cessful with daily polar-weather variability, al-
though finer-scale regional simulations do show
promise for improved global-model simulations
as their resolution increases.

Chapter 3 describes techniques to downscale
coarse-resolution global climate model output
to higher resolution for regional applications.
These downscaling methodologies fall prima-
rily into two categories. In the first, a higher-
resolution, limited-area numerical
meteorological model is driven by global cli-
mate model output at its lateral boundaries.
These dynamical downscaling strategies are
beneficial when supplied with appropriate sea-
surface and atmospheric boundary conditions,
but their value is limited by uncertainties in in-
formation supplied by global models. Given the
value of multimodel ensembles for larger-scale
climate prediction, coordinated downscaling
clearly must be performed with a representative
set of global model simulations as input, rather
than focusing on results from one or two mod-
els. Relatively few such multimodel dynami-
cal downscaling studies have been performed
to date.

In the second category, empirical relationships
between large- and small-scale observations are
developed, then applied to global climate model
output to provide regional detail. Statistical
techniques to produce appropriate small-scale
structures from climate simulations are referred
to as “statistical downscaling.” They can be as
effective as high-resolution numerical simula-
tions in providing climate change information
to regions unresolved by most current global
models. Because of the computational effi-
ciency of these techniques, they can much more
easily utilize a full suite of multimodel ensem-
bles. The statistical methods, however, are com-
pletely dependent on the accuracy of regional
circulation patterns produced by global models.
Dynamical models, through higher resolution
or better representation of important physical
processes, often can improve the physical re-
alism of simulated regional circulation. Thus,

the strengths and weaknesses of dynamical
modeling and statistical methods often are
complementary.

Regional trends in extreme events are not al-
ways captured by current models, but it is diffi-
cult to assess the significance of these
discrepancies and to distinguish between model
deficiencies and natural variability.

The use of climate model results to assess eco-
nomic, social, and environmental impacts is be-
coming more sophisticated, albeit slowly.
Simple methods requiring only mean changes
in temperature and precipitation to estimate im-
pacts remain popular, but an increasing number
of studies are using more detailed information
such as the entire distribution of daily or
monthly values and extreme outcomes. The
mismatch between models’ spatial resolution vs
the scale of impact-relevant climate features and
of impact models remains an impediment for
certain applications. Chapter 7 provides several
examples of applications using climate model
results and downscaling techniques.

Chapter 6 is devoted to trends in climate model
development. With increasing computer power
and observational understanding, future models
will include both higher resolution and more
processes.

Resolution increases most certainly will lead to
improved representations of atmospheric and
oceanic general circulations. Ocean components
of current climate models do not directly simu-
late the oceans’ very energetic motions referred
to as “mesoscale eddies.” Simulation of these
small-scale flow patterns requires horizontal
grid sizes of 10 km or smaller. Current oceanic
components of climate models are effectively
laminar rather than turbulent, and the effects of
these eddies must be approximated by imper-
fect theories. As computer power increases, new
models that resolve these eddies will be incor-
porated into climate models to explore their im-

What are the tradeoffs to be made in fur-
ther climate model development (e.g., 
between increasing spatial/temporal res-
olution and representing additional 
physical/biological processes)?

How well do climate models simulate 
regional climate variability and change?
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pact on decadal variability as well as heat and
carbon uptake. Similarly, atmospheric general
circulation models will evolve to “cloud-re-
solving models” (CRMs) with spatial resolu-
tions of less than a few kilometers. The hope is
that CRMs will provide better results through
explicit simulation of many cloud properties
now poorly represented on subgrid scales of
current atmospheric models. CRMs are not new
frameworks but rather are based on models de-
signed for mesoscale storm and cumulus con-
vection simulations.

Models of glacial ice are in their infancy. Gla-
cial models directly coupled to atmosphere-
ocean models typically account for only direct
melting and accumulation at the surface of ice
sheets and not the dynamic discharge due to gla-
cial flow. More-detailed current models typi-
cally generate discharges that change only over
centuries and millennia. Recent evidence for
rapid variations in this glacial outflow indicates
that more-realistic glacial models are needed to
estimate the evolution of future sea level.

Inclusion of carbon-cycle processes and other
biogeochemical cycles is required to transform
physical climate models into full Earth system
models that incorporate feedbacks influencing
greenhouse gas and aerosol concentrations in
the atmosphere. Land models that predict veg-
etation patterns are being developed actively,
but the demands of these models on the quality
of simulated precipitation patterns ensures that
their evolution will be gradual and tied to im-
provements in the simulation of regional cli-
mate. Uncertainties about carbon-feedback
processes in the ocean as well as on land, how-
ever, must be reduced for more reliable future
estimates of climate change.
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The use of computers to simulate complex systems has grown in the past few decades to play a

central role in many areas of science. Climate modeling is one of the best examples of this trend

and one of the great success stories of scientific simulation. Building a laboratory analog of the

Earth’s climate system with all its complexity is impossible. Instead, the successes of climate mod-

eling allow us to address many questions about climate by experimenting with simulations—that

is, with mathematical models of the climate system. Despite the success of the climate modeling

enterprise, the complexity of our Earth imposes important limitations on existing climate mod-

els. This report aims to help the reader understand the valid uses, as well as the limitations, of cur-

rent climate models.

Climate modeling and forecasting grew from
the desire to predict weather. The distinction be-
tween climate and weather is not precise. Oper-
ational weather forecasting has focused
historically on time scales of a few days but
more recently has been extended to months and
seasons in attempts to predict the evolution of El
Niño episodes. The goal of climate modeling
can be thought of as the extension of forecasting
to longer and longer time periods. The focus is
not on individual weather events, which are un-
predictable on long time scales, but on the sta-
tistics of these events and on the slow evolution
of oceans and ice sheets. Whether the forecast-
ing of individual El Niño episodes is considered
weather or climate is a matter of convention. For
the purpose of this report, we will consider El
Niño forecasting as weather and will not ad-
dress it directly. On the climate side we are con-
cerned, for example, with the ability of models
to simulate the statistical characteristics of El

Niño variability or extratropical storms or At-
lantic hurricanes, with an eye toward assessing
the ability of models to predict how variability
might change as the climate evolves in coming
decades and centuries.

An important constraint on climate models not
imposed on weather-forecast models is the re-
quirement that the global system precisely and
accurately maintain the global energy balance
over very long periods of time. The Earth’s en-
ergy balance (or “budget”) is defined as the dif-
ference between absorbed solar energy and
emitted infrared radiation to space. It is affected
by many factors, including the accumulation of
greenhouse gases, such as carbon dioxide, in the
atmosphere. The decades-to-century changes in
the Earth’s energy budget, manifested as climate
changes, are just a few percent of the average
values of that budget’s largest terms. Many de-
cisions about model construction described in
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Chapter 2 are based on the need to properly 
and accurately simulate the long-term energy
balance.

This report will focus primarily on comprehen-
sive physical climate models used for the most
recent international Coupled Model Intercom-
parison Project (CMIP) coordinated experi-
ments (Meehl et al. 2006) sponsored by the
World Climate Research Programme (WCRP).
These coupled atmosphere-ocean general cir-
culation models (AOGCMs) incorporate de-
tailed representations of the atmosphere, land
surface, oceans, and sea ice. Where practical,
we will emphasize and highlight results from
the three U.S. modeling projects that partici-
pated in the CMIP experiments. Additionally,
this report examines the use of regional climate
models (RCMs) for obtaining higher-resolution
details from AOGCM simulations over smaller
regions. Still, other types of climate models are
being developed and applied to climate simula-
tion. The more-complete Earth system models,
which build carbon-cycle and ecosystem
processes on top of AOGCMs, are used prima-
rily for studies of future climate change and pa-
leoclimatology, neither of which is directly
relevant to this report. Another class of models
not discussed here but used extensively, partic-
ularly when computer resources are limited, is
Earth system models of intermediate complex-
ity (EMICs). Although these models have many
more assumptions and simplifications than are
found in CMIP models (Claussen et al. 2002),
they are particularly useful in exploring a wide
range of mechanisms and obtaining broad esti-
mates of future climate change projections that
can be further refined with AOGCM experi-
ments.

1.1 BRIEF HISTORY OF CLIMATE
MODEL DEVELOPMENT

As numerical weather prediction was develop-
ing in the 1950s as one of the first computer ap-
plications, the possibility of also using
numerical simulation to study climate became
evident almost immediately. The feasibility of
generating stable integrations of atmospheric
equations for arbitrarily long time periods was
demonstrated by Norman Phillips in 1956.
About that time, Joseph Smagorinsky started a
program in climate modeling that ultimately be-

came one of the most vigorous and longest-
lived GCM development programs at the 
National Oceanic and Atmospheric Administra-
tion’s Geophysical Fluid Dynamics Laboratory
(GFDL) at Princeton University. The University
of California at Los Angeles began producing
atmospheric general circulation models
(AGCMs) beginning in 1961 under the leader-
ship of Yale Mintz and Akio Arakawa. This pro-
gram influenced others in the 1960s and 1970s,
leading to modeling programs found today at
National Aeronautics and Space Administration
(NASA) laboratories and several universities.
At Lawrence Livermore National Laboratory,
Cecil E. Leith developed an early AGCM in
1964. The U.S. National Center for Atmospheric
Research (NCAR) initiated AGCM develop-
ment in 1964 under Akira Kasahara and Warren
Washington. Leith moved to NCAR in the late
1960s and, in the early 1980s, oversaw con-
struction of the Community Climate Model, a
predecessor to the present Community Climate
System Model (CCSM).

Early weather models focused on fluid dynam-
ics rather than on radiative transfer and the at-
mosphere’s energy budget, which are centrally
important for climate simulations. Additions to
the original AGCMs used for weather analysis
and prediction were needed to make climate
simulations possible. Furthermore, because cli-
mate simulation focuses on time scales longer
than a season, oceans and sea ice must be in-
cluded in the modeling system in addition to the
more rapidly evolving atmosphere. Thus, ocean
and ice models have been coupled with atmos-
pheric models. The first ocean GCMs were de-
veloped at GFDL by Bryan and Cox in the
1960s and then coupled with the atmosphere by
Manabe and Bryan in the 1970s. Paralleling
events in the United States, the 1960s and 1970s
also were a period of climate- and weather-
model development throughout the world, with
major centers emerging in Europe and Asia.
Representatives of these groups gathered in
Stockholm in August 1974, under the sponsor-
ship of the Global Atmospheric Research Pro-
gramme to produce a seminal treatise on
climate modeling (GARP 1975). This meeting
established collaborations that still promote in-
ternational cooperation today.
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The use of climate models in research on car-
bon dioxide and climate began in the early
1970s. The important study, “Inadvertent Cli-
mate Modification” (SMIC 1971), endorsed the
use of GCM-based climate models to study the
possibility of anthropogenic climate change.
With continued improvements in both climate
observations and computer power, modeling
groups furthered their models through steady
but incremental improvements. By the
late1980s, several national and international or-
ganizations formed to assess and expand scien-
tific research related to global climate change.
These developments spurred interest in acceler-
ating the development of improved climate
models. The primary focus of Working Group 1
of the United Nations Intergovernmental Panel
on Climate Change (IPCC), which began in
1988, was the scientific inquiry into physical
processes governing climate change. IPCC’s
first Scientific Assessment (IPCC 1990) stated,
“Improved prediction of climate change de-
pends on the development of climate models,
which is the objective of the climate modeling
programme of the World Climate Research Pro-
gramme.” The United States Global Change Re-

search Program (USGCRP), established in
1989, designated climate modeling and predic-
tion as one of the four high-priority integrating
themes of the program (Our Changing Planet
1991). The combination of steadily increasing
computer power and research spurred by WCRP
and USGCRP has led to a steady improvement
in the completeness, accuracy, and resolution of
AOGCMS for climate simulation and predic-
tion. An often-used illustration from the Third
IPCC Working Group 1 Scientific Assessment
of Climate Change in 2001 depicts this evolu-
tion (see Fig. 1.1). Even more comprehensive
climate models produced a series of coordinated
numerical simulations for the third international
Climate Model Intercomparison Project
(CMIP3), which were used extensively in re-
search cited in the recent Fourth IPCC Assess-
ment (IPCC 2007). Contributions came from
three groups in the United States (GFDL,
NCAR, and the NASA Goddard Institute for
Space Studies) and others in the United King-
dom, Germany, France, Japan, Australia,
Canada, Russia, China, Korea, and Norway. 

Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere

Mid-1970s Mid-1980s Early 1990s Late 1990s

Development of Climate Models: Past, Present, and Future
Present Day Early 2000s?

Land surface Land surface Land surface Land surface Land surface
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Figure 1.1. Historical
Development of
Climate Models. 
[Figure source: Climate
Change 2001: The Scientific
Basis, Contribution of
Working Group 1 to the
Assessment Report of the
Intergovernmental Panel on
Climate Change, p. 48.
Used with permission
from IPCC.]
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1.2 CLIMATE MODEL
CONSTRUCTION

Comprehensive climate models are constructed
using expert judgments to satisfy many con-
straints and requirements. Overarching consid-
erations are the accurate simulation of the most
important climate features and the scientific un-
derstanding of the processes that control these
features. Typically, the basic requirement is that
models should simulate features important to
humans, particularly surface variables such as
temperature, precipitation, windiness, and
storminess. This is a less-straightforward re-
quirement than it seems because a physically
based climate model also must simulate all
complex interactions in the coupled atmos-
phere–ocean–land surface–ice system mani-
fested as climate variables of interest. For
example, jet streams at altitudes of 10 km above
the surface must be simulated accurately if
models are to generate midlatitude weather with
realistic characteristics. Midlatitude highs and
lows shown on surface weather maps are inti-
mately associated with these high-altitude wind
patterns. As another example, the basic temper-
ature decrease from the equator to the poles can-
not be simulated without taking into account the
poleward transport of heat in the oceans, some
of this heat being carried by currents 2 or 3 km
deep into the ocean interior. Thus, comprehen-
sive models should produce correctly not just
the means of variables of interest but also the
extremes and other measures of natural vari-
ability. Finally, our models should be capable of
simulating changes in statistics caused by rela-
tively small changes in the Earth’s energy
budget that result from natural and human ac-
tions.

Climate processes operate on time scales rang-
ing from several hours to millennia and on spa-
tial scales ranging from a few centimeters to
thousands of kilometers. Principles of scale
analysis, fluid dynamical filtering, and numer-
ical analysis are used for intelligent compro-
mises and approximations to make possible the
formulation of mathematical representations of

processes and their interactions. These mathe-
matical models are then translated into com-
puter codes executed on some of the most
powerful computers in the world. Available
computer power helps determine the types of
approximations required. As a general rule,
growth of computational resources allows mod-
elers to formulate algorithms less dependent on
approximations known to have limitations,
thereby producing simulations more solidly
founded on established physical principles.
These approximations are most often found in
“closure” or “parameterization” schemes that
take into account unresolved motions and
processes and are always required because cli-
mate simulations must be designed so they can
be completed and analyzed by scientists in a
timely manner, even if run on the most power-
ful computers.

Climate models have shown steady improve-
ment over time as computer power has in-
creased, our understanding of physical
processes of climatic relevance has grown,
datasets useful for model evaluation have been
developed, and our computational algorithms
have improved. Figure 1.2 shows one attempt at
quantifying this change. It compares a particu-
lar metric of climate model performance among
the CMIP1 (1995), CMIP2 (1997), and CMIP3
(2004) ensembles of AOGCMs. This particular
metric assesses model performance in simulat-
ing the mean climate of the late 20th Century as
measured by a basket of indicators focusing on
aspects of atmospheric climate for which ob-
servational counterparts are deemed adequate.
Model ranking according to individual mem-
bers of this basket of indicators varies greatly, so
this aggregate ranking depends on how different
indicators are weighted in relative importance.
Nevertheless, the conclusion that models have
improved over time is not dependent on the rel-
ative weighting factors, as nearly all models
have improved in most respects. The construc-
tion of metrics for evaluating climate models is
itself a subject of intensive research and will be
covered in more detail in Chapter 2.
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Also shown in Fig. 1.2 is the same metric eval-
uated from climate simulation results obtained
by averaging over all AOGCMs in the CMIP1,
CMIP2, and CMIP3 archives. The CMIP3 “en-
semble-mean” model performs better than any
individual model by this metric and by many
others. This kind of result has convinced the
community of the value of a multimodel ap-
proach to climate change projection. Our un-
derstanding of climate is still insufficient to
justify proclaiming any one model “best” or
even showing metrics of model performance
that imply skill in predicting the future. More
appropriate in any assessments focusing on

adaptation or mitigation strategies is to take into
account, in a pertinently informed manner, the
products of distinct models built using different
expert judgments at centers around the world.

1.3 SUMMARY OF SAP 3.1
CHAPTERS

The remaining sections of this report describe
climate model development, evaluation, and ap-
plications in more detail. Chapter 2 describes
the development and construction of models
and how they are employed for climate research.
Chapter 3 discusses regional climate models

Figure 1.2. Performance Index I2 for Individual Models (circles) and Model
Generations (rows). 
Best performing models have low I2 values and are located toward the left. Circle sizes indicate the length
of the 95% confidence intervals. Letters and numbers identify individual models; flux corrected models are
labeled in red. Grey circles show the average I2 of all models within one model group. Black circles indicate
the I2 of the multimodel mean taken over one model group. The green circle (REA) corresponds to the I2
of the NCEP/NCAR Reanalysis (Kalnay et al. 1996), conducted by the National Weather Service’s National
Centers for Environmental Prediction and the National Center for Atmospheric Research. Last row
(PICTRL) shows I2 for the preindustrial control experiment of the CMIP3 project. [Adapted from Fig. 1 in
T. Reichler and J. Kim 2008: How well do coupled models simulate today’s climate? Bulletin American
Meteorological Society, in press. Reproduced by permission of the American Meteorological Society.]
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and their use in “downscaling” global model re-
sults to specific geographic regions, particularly
North America. The concept of climate sensi-
tivity—the response of a surface temperature to
a specified change in the energy budget at the
top of the model’s atmosphere—is described in
Chapter 4. A survey of how well important cli-
mate features are simulated by modern models
is found in Chapter 5, while Chapter 6 depicts
near-term development priorities for future
model development. Finally, Chapter 7 illus-
trates a few examples of how climate model
simulations are used for practical applications.
A detailed Reference section follows Chapter 7.
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Modern climate models are composed of a system of interacting model components, each of

which simulates a different part of the climate system. The individual parts often can be run in-

dependently for certain applications. Nearly all the Coupled Model Intercomparison Project 3

(CMIP3) class of models include four primary components: atmosphere, land surface, ocean, and

sea ice. The atmospheric and ocean components are known as “general circulation models” or

GCMs because they explicitly simulate the large-scale global circulation of the atmosphere and

ocean. Climate models sometimes are referred to as coupled atmosphere-ocean GCMs. This name

may be misleading because coupled GCMs can be employed to simulate aspects of weather and

ocean dynamics without being able to maintain a realistic climate projection over centuries of sim-

ulated time, as required of a climate model used for studying anthropogenic climate change. What

follows in this chapter is a description of a modern climate model’s major components and how

they are coupled and tested for climate simulation.

2.1 ATMOSPHERIC GENERAL
CIRCULATION MODELS

Atmospheric general circulation models
(AGCMs) are computer programs that evolve
the atmosphere’s three-dimensional state for-
ward in time. This atmospheric state is de-
scribed by such variables as temperature,
pressure, humidity, winds, and water and ice
condensate in clouds. These variables are de-
fined on a spatial grid, with grid spacing deter-
mined in large part by available computational
resources. Some processes governing this at-
mospheric state’s evolution are relatively well
resolved by model grids and some are not. The
latter are incorporated into models through ap-
proximations often referred to as parameteriza-
tions. Processes that transport heat, water, and

momentum horizontally are relatively well re-
solved by the grid in current atmospheric mod-
els, but processes that redistribute these
quantities vertically have a significant part that
is controlled by subgrid-scale parameteriza-
tions.

The model’s grid-scale evolution is determined
by equations describing the thermodynamics
and fluid dynamics of an ideal gas. The atmos-
phere is a thin spherical shell of air that en-
velops the Earth. For climate simulation,
emphasis is placed on the atmosphere’s lowest
20 to 30 km (i.e., the troposphere and the lower
stratosphere). This layer contains over 95% of
the atmosphere’s mass and virtually all of its
water vapor, and it produces nearly all weather
although current research suggests possible in-
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teractions between this layer and higher atmos-
pheric levels (e.g., Pawson et al. 2000). Because
of the disparity between scales of horizontal and
vertical motions governing global and regional
climate, the two motions are treated differently
by model algorithms. The resulting set of equa-
tions is often referred to as the primitive equa-
tions (Haltiner and Williams 1980).

Although nearly all AGCMs use this same set
of primitive dynamical equations, they use dif-
ferent numerical algorithms to solve them. In all
cases, the atmosphere is divided into discrete
vertical layers, which are then overlaid with a
two-dimensional horizontal grid, producing a
three-dimensional mesh of grid elements. The
equations are solved as a function of time on
this mesh. The portion of the model code gov-
erning the fluid dynamics explicitly simulated
on this mesh often is referred to as the model’s
“dynamical core.” Even with the same numeri-
cal approach, AGCMs differ in spatial resolu-
tions and configuration of model grids. Some
models use a “spectral” representation of winds
and temperatures, in which these fields are writ-
ten as linear combinations of predefined pat-
terns on the sphere (spherical harmonics) and
are then mapped to a grid when local values are
required. Some models have few layers above
the tropopause (the moving boundary between
the troposphere and stratosphere (e.g., GFDL
2004)), while others have as many layers above
the troposphere as in it (e.g., Schmidt et al. 2006).

All AGCMs use a coordinate system in which
the Earth’s surface is a coordinate surface, sim-
plifying exchanges of heat, moisture, trace sub-
stances, and momentum between the Earth’s
surface and the atmosphere. Numerical algo-
rithms of AGCMs should precisely conserve the
atmosphere’s mass and energy. Typical AGCMs
have spatial resolution of 200 km in the hori-
zontal and 20 levels in the volume below the al-
titude of 15 km. Because numerical errors often
depend on flow patterns, there are no simple
ways to assess the accuracy of numerical dis-
cretizations in AGCMs. Models use idealized
cases testing the model’s long-term stability and
efficiency (e.g., Held and Suarez 1994), as well
as tests focusing on accuracy using short inte-
grations (e.g., Polvani, Scott, and Thomas 2005).

All AGCMs must incorporate the effects of ra-
diant-energy transfer. The radiative-transfer
code computes the absorption and emission of
electromagnetic waves by air molecules and at-
mospheric particles. Atmospheric gases absorb
and emit radiation in “spectral lines” centered
at discrete wavelengths, but the computational
costs are too high in a climate model to perform
this calculation for each individual spectral line.
AGCMs use approximations, which differ
among models, to group bands of wavelengths
together in a more efficient calculation. Most
models have separate radiation codes to treat
solar (visible) radiation and the much-longer-
wavelength terrestrial (infrared) radiation. Ra-
diation calculation includes the effects of water
vapor, carbon dioxide, ozone, and clouds. Mod-
els used in climate change experiments also in-
clude aerosols and additional trace gases such
as methane, nitrous oxide, and the cloroflouro-
carbons. Validation of AGCM radiation codes
often is done offline (separate from other
AGCM components) by comparison with line-
by-line model calculations that, in turn, are
compared against laboratory and field observa-
tions (e.g., Ellingson and Fouquart 1991;
Clough, Iacono, and Moncet 1992; Collins et al.
2006b).

All GCMs use subgrid-scale parameterizations
to simulate processes that are too small or op-
erate on time scales too fast to be resolved on
the model grid. The most important parameter-
izations are those involving cirrus and stratus
cloud formation and dissipation, cumulus con-
vection (thunderstorms and fair-weather cumu-
lus clouds), and turbulence and subgrid-scale
mixing. For cloud calculations, most AGCMs
treat ice and liquid water as atmospheric state
variables. Some models also separate cloud par-
ticles into ice crystals, snow, graupel (snow pel-
lets), cloud water, and rainwater. Empirical
relationships are used to calculate conversions
among different particle types. Representing
these processes on the scale of model grids is
particularly difficult and involves calculation of
fractional cloud cover within a grid box, which
greatly affects radiative transfer and model sen-
sitivity. Models either predict cloud amounts
from the instantaneous thermodynamical and
hydrological state of a grid box or they treat
cloud fraction as a time-evolving model vari-



able. In higher-resolution models, one can at-
tempt to explicitly simulate the size distribution
of cloud particles and the “habit” or nonspheri-
cal shape of ice particles, but no current global
AGCMs attempt this.

Cumulus convective transports, which are im-
portant in the atmosphere but cannot be explic-
itly resolved at GCM scale, are calculated using
convective parameterization algorithms. Most
current models use a cumulus mass flux scheme
patterned after that proposed by Arakawa and
Schubert (1974), in which convection’s upward
motion occurs in very narrow plumes that take
up a negligible fraction of a grid box’s area.
Schemes differ in techniques used to determine
the amount of mass flowing through these
plumes and the manner in which air is entrained
and detrained by the rising plume. Most models
do not calculate separately the area and vertical
velocity of convection but try to predict only the
product of mass and area, or convective mass
flux. Prediction of convective velocities, how-
ever, is needed for new models of interactions
between aerosols and clouds. Most current
schemes do not account for differences between
organized mesoscale convective systems and
simple plumes. The turbulent mixing rate of up-
drafts and downdrafts with environments and
the phase changes of water vapor within con-
vective systems are treated with a mix of em-
piricism and constraints based on the moist
thermodynamics of rising air parcels. Some
models also include a separate parameterization
of shallow, nonprecipitating convection (fair-
weather cumulus clouds). In short, clouds gen-
erated by cumulus convection in climate models
should be thought of as based in large part on
empirical relationships.

All AGCMs parameterize the turbulent trans-
port of momentum, moisture, and energy in the
atmospheric boundary layer near the surface. A
long-standing theoretical framework, Monin-
Obukhov similarity theory, is used to calculate
the vertical distribution of turbulent fluxes and
state variables in a thin (typically less than 10
m) layer of air adjacent to the surface. Above
the surface layer, turbulent fluxes are calculated
based on closure assumptions that provide a
complete set of equations for subgrid-scale vari-
ations. Closure assumptions differ among
AGCMs; some models use high-order closures

in which the fluxes or second-order moments
are calculated prognostically (with memory in
these higher-order moments from one time step
to the next). Turbulent fluxes near the surface
depend on surface conditions such as rough-
ness, soil moisture, and vegetation. In addition,
all models use diffusion schemes or dissipative
numerical algorithms to simulate kinetic energy
dissipation from turbulence far from the surface
and to damp small-scale unresolved structures
produced from resolved scales by turbulent at-
mospheric flow.

The realization that a significant fraction of mo-
mentum transfer between atmosphere and sur-
face takes place through nonturbulent pressure
forces on small-scale “hills” has resulted in a
substantial effort to understand and model this
transfer (e.g., McFarlane 1987; Kim and Lee
2003). This process is often referred to as grav-
ity wave drag because it is intimately related to
atmospheric wave generation. The variety of
gravity wave drag parameterizations is a signif-
icant source of differences in mean wind fields
generated by AGCMs. Accounting for both sur-
face-generated and convectively generated grav-
ity waves are difficult aspects of modeling the
stratosphere and mesosphere (≥ 20 km altitude),
since winds in those regions are affected
strongly by transfer of momentum and energy
from these unresolved waves.

Extensive field programs have been designed to
evaluate parameterizations in GCMs, ranging
from tests of gravity wave drag schemes
[Mesoscale Alpine Program (called MAP), e.g.,
Bougeault et al. 2001] to tests of radiative trans-
fer and cloud parameterizations [Atmospheric
Radiation Measurement Program (called
ARM), Ackerman and Stokes 2003]. Running
an AGCM coupled to a land model as a numer-
ical weather prediction model for a few days—
starting with best estimates of the atmosphere
and land’s instantaneous state at any given
time—is a valuable test of the entire package of
atmospheric parameterizations and dynamical
core (e.g., Xie et al. 2004). Atmosphere-land
models also are routinely tested by running
them with boundary conditions taken from ob-
served sea-surface temperatures and sea-ice dis-
tributions (Gates 1992) and examining the
resulting climate.

Climate Models: An Assessment of Strengths and Limitations
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2.2 OCEAN GENERAL
CIRCULATION MODELS

Ocean general circulation models (OGCMs)
solve the primitive equations for global incom-
pressible fluid flow analogous to the ideal-gas
primitive equations solved by atmospheric
GCMs. In climate models, OGCMs are coupled
to the atmosphere and ice models through the
exchange of heat, salinity, and momentum at the
boundary among components. Like the atmos-
phere, the ocean’s horizontal dimensions are
much larger than its vertical dimension, result-
ing in separation between processes that control
horizontal and vertical fluxes. With continents,
enclosed basins, narrow straits, and submarine
basins and ridges, the ocean has a more com-
plex three-dimensional boundary than does the
atmosphere.. Furthermore, the thermodynamics
of sea water is very different from that of air, so
an empirical equation of state must be used in
place of the ideal gas law.

An important distinction among ocean models
is the choice of vertical discretization. Many
models use vertical levels that are fixed dis-
tances below the surface (Z-level models) based
on the early efforts of Bryan and Cox (1967)
and Bryan (1969a, b). The General Fluid Dy-
namics Laboratory (GFDL) and Community
Climate System Model (CCSM) ocean compo-
nents fall into this category (Griffies et al. 2005;
Maltrud et al. 1998). Two Goddard Institute for
Space Studies (GISS) models (R and AOM) use
a variant of this approach in which mass rather
than height is used as the vertical coordinate
(Russell, Miller, and Rind 1995; Russell et al.
2000). A more fundamental alternative uses
density as a vertical coordinate. Motivating this
choice is the desire to control as precisely as
possible the exchange of heat between layers of
differing density, which is very small in much of
the ocean yet centrally important for simulation
of climate. The GISS EH model utilizes a hy-
brid scheme that transitions from a Z-coordinate
near the surface to density layers in the ocean
interior (Sun and Bleck 2001; Bleck 2002; Sun
and Hansen 2003).

Horizontal grids used by most ocean models in
the CMIP3 archive are comparable to or some-
what finer than grids in the atmospheric models

to which they are coupled, typically on the order
of 100 km (~ 1º spacing in latitude and longi-
tude) for most of Earth. In many OGCMs the
north-south resolution is enhanced within 5º lat-
itude of the equator to improve the ability to
simulate important equatorial processes.
OGCM grids usually are designed to avoid co-
ordinate singularities caused by the convergence
of meridians at the poles. For example, the
CCSM OGCM grid is rotated to place its North
Pole over a continent, while the GFDL models
use a grid with three poles, all of which are
placed over land (Murray 1996). Such a grid re-
sults in having all ocean grid points at numeri-
cally viable locations.

Processes that control ocean mixing near the
surface are complex and take place on small
scales (order of centimeters). To parameterize
turbulent mixing near the surface, the current
generation of OGCMs uses several different ap-
proaches (Large, McWilliams, and Doney
1994) similar to those developed for atmos-
pheric near-surface turbulence. Within the
ocean’s stratified, adiabatic interior, vertical
mixing takes place on scales from meters to
kilometers (Fig. 2.1); the smaller scales also
must be parameterized in ocean components.
Ocean mixing contributes to its heat uptake and
stratification, which in turn affects circulation
patterns over time scales of decades and longer.
Experts generally feel (e.g., Schopf et al. 2003)
that subgrid-scale mixing parameterizations in
OGCMs contribute significantly to uncertainty
in estimates of the ocean’s contribution to cli-
mate change.

Very energetic eddy motions occur in the ocean
on the scale of a few tens of kilometers. These
so-called mesoscale eddies are not present in the
ocean simulations of CMIP3 climate models.
Ocean models used for climate simulation can-
not afford the computational cost of explicitly
resolving ocean mesoscale eddies. Instead, they
must parameterize mixing by the eddies. Treat-
ment of these mesoscale eddy effects is an im-
portant factor distinguishing one ocean model
from another. Most real ocean mixing is along
rather than across surfaces of constant density.
Development of parameterizations that account
for this essential feature of mesoscale eddy mix-
ing (Gent and McWilliams 1990; Griffies 1998)
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is a major advance in recent ocean and climate
modeling. Inclusion of higher-resolution,
mesoscale eddy–resolving ocean models in fu-
ture climate models would reduce uncertainties
associated with these parameterizations.

Other mixing processes that may be important
in the ocean include tidal mixing and turbulence
generated by interactions with the ocean’s bot-
tom, both of which are included in some mod-
els. Lee, Rosati, and Spellman (2006) describe
some effects of tidal mixing in a climate model.
Some OGCMs also explicitly treat the bottom
boundary and sill overflows (Beckman and
Dosher 1997; Roberts and Wood 1997; Griffies
et al. 2005). Furthermore, sunlight penetration
into the ocean is controlled by chlorophyll dis-
tributions (e.g., Paulson and Simpson 1977;
Morel and Antoine 1994; Ohlmann 2003), and
the depth of penetration can affect surface tem-
peratures. All U.S. CMIP3 models include some
treatment of this effect, but they prescribe rather
than attempt to simulate the upper ocean biol-
ogy controlling water opacity. Finally, the in-
clusion of fresh water input by rivers is essential
to close the global hydrological cycle; it affects
ocean mixing locally and is handled by models
in a variety of ways.

The relatively crude resolution of OGCMs used
in climate models results in isolation of the
smaller seas from large ocean basins. This re-

quires models to perform ad hoc exchanges of
water between the isolated seas and the ocean
to simulate what in nature involves a channel or
strait. (The Strait of Gibraltar is an excellent ex-
ample.) Various modeling groups have chosen
different methods to handle water mixing be-
tween smaller seas and larger ocean basins.

OGCM components of climate models are often
evaluated in isolation—analogous to the evalu-
ation of AGCMs with prescribed ocean and sea-
ice boundary conditions—in addition to being
evaluated as components of fully coupled
ocean-atmosphere GCMs. (Results of full
AOGCM evaluation are discussed in Chapter
5.) Evaluation of ocean models in isolation re-
quires input of boundary conditions at the air-
sea interface. To compare simulations with
observed data, boundary conditions or surface
forcing are from the same period as the data.
These surface fluxes also have uncertainties
and, as a result, the evaluation of OGCMs with
specified sea-surface boundary conditions must
take these uncertainties into account.

2.3 LAND-SURFACE MODELS

Interaction of Earth’s surface with its atmos-
phere is an integral aspect of the climate sys-
tem. Exchanges (fluxes) of mass and energy,
water vapor, and momentum occur at the inter-
face. Feedbacks between atmosphere and sur-

Figure 2.1. Schematic Showing Interaction of a Well-
Mixed Surface Layer with Stratified Interior in a Region
with a Strong Temperature Gradient.
Mixing (dashed lines) is occurring both across temperature (T)
gradients and along the temperature gradient with increasing depth.
This process is poorly observed and not well understood. It must be
parameterized in large-scale models. [Adapted from Fig. 1, p. 18, in
Coupling Process and Model Studies of Ocean Mixing to Improve Climate
Models—A Pilot Climate Process Modeling and Science Team, a U.S.
CLIVAR white paper by Schopf et al. (2003). Figure originated by John
Marshall, Massachusetts Institute of Technology.] 
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face affecting these fluxes have important ef-
fects on the climate system (Seneviratne et al.
2006). Modeling the processes taking place over
land is particularly challenging because the land
surface is very heterogeneous and biological
mechanisms in plants are important. Climate
model simulations are very sensitive to the
choice of land models (Irannejad, Henderson-
Sellers, and Sharmeen 2003).

In the earliest global climate models, land-sur-
face modeling occurred in large measure to pro-
vide a lower boundary to the atmosphere that
was consistent with energy, momentum, and
moisture balances (e.g., Manabe 1969). The
land surface was represented by a balance
among incoming and outgoing energy fluxes
and a “bucket” that received precipitation from
the atmosphere and evaporated moisture into
the atmosphere, with a portion of the bucket’s
water draining away from the model as a type
of runoff. The bucket’s depth equaled soil field
capacity. Little attention was paid to the detailed
set of biological, chemical, and physical
processes linked together in the climate system’s
terrestrial portion. From this simple starting
point, land surface modeling for climate simu-
lation has increased markedly in sophistication,
with increasing realism and inclusiveness of ter-
restrial surface and subsurface processes.

Although these developments have increased
the physical basis of land modeling, greater
complexity has at times contributed to more dif-
ferences among climate models (Gates et al.
1999). However, the advent of systematic pro-
grams comparing land models, such as the Proj-
ect for Intercomparison of Land Surface
Parameterization Schemes (PILPS, Henderson-
Sellers et al. 1995; Henderson-Sellers 2006) has
led gradually to more agreement with observa-
tions and among land models (Overgaard, Ros-
bjerg, and Butts 2006), in part because
additional observations have been used to con-
strain their behavior. However, choices for
adding processes and increasing realism have
varied among land-surface models (e.g., Ran-
dall et al. 2007).

Figure 2.2 shows schematically the types of
physical processes included in typical land
models. Note that the schematic in the figure
describes a land model used for both weather
forecasting and climate simulation, an indica-
tion of the increasing sophistication demanded
by both. The figure also hints at important bio-
physical and biogeochemical processes that
gradually have been added and continue to be
added to land models used for climate simula-
tion, such as biophysical controls on transpira-
tion and carbon uptake.

Figure 2.2. Schematic
of Physical Processes in
a Contemporary Land
Model. 
[Adapted from Fig. 6 in F.
Chen and J. Dudhia 2001:
Coupling an advanced land
surface–hydrology model
with the Penn State–NCAR
MM5 modeling system. Part I:
Model implementation and
sensitivity, Monthly Weather
Review, 129, 569–585.
Reproduced by permission of
the American Meteorological
Society.]
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Some of the most extensive increases in com-
plexity and sophistication have occurred with
vegetation modeling in land models. An early
generation of land models (Wilson et al. 1987;
Sellers et al. 1986) introduced biophysical con-
trols on plant transpiration by adding a vegeta-
tion canopy over the surface, thereby
implementing vegetative control on the terres-
trial water cycle. These models included ex-
changes of energy and moisture among the
surface, canopy, and atmosphere, along with
momentum loss to the surface. Further devel-
opments included improved plant physiology
that allowed simulation of carbon dioxide fluxes
(e.g., Bonan 1995; Sellers et al. 1996). This
method lets the model treat the flow of water
and carbon dioxide as an optimization problem,
balancing carbon uptake for photosynthesis
against water loss through transpiration. Im-
provements also included implementation of
model parameters that could be calibrated with
satellite observation (Sellers et al. 1996),
thereby allowing global-scale calibration.

Continued development has included more re-
alistic parameterization of roots (Arora and
Boer 2003; Kleidon 2004) and the addition of
multiple canopy layers (e.g., Gu et al. 1999;
Baldocchi and Harley 1995; Wilson et al. 2003).
The latter method, however, has not been used
in climate models because the added complex-
ity of multicanopy models renders unambigu-
ous calibration very difficult. An important
ongoing advance is the incorporation of biolog-
ical processes that produce carbon sources and
sinks through vegetation growth and decay and
the cycling of carbon in the soil (e.g., Li et al.
2006), although considerable work is needed to
determine observed magnitudes of carbon up-
take and depletion.

Most land models assume soil with properties
that correspond to inorganic soils, generally
consistent with mixtures of loam, sand, and clay.
High-latitude regions, however, may have ex-
tensive zones of organic soils (peat bogs), and
some models have included organic soils topped
by mosses, which has led to decreased soil heat
flux and increased surface-sensible and latent-
heat fluxes (Beringer et al. 2001).

Climate models initially treated snow as a single
layer that could grow through snowfall or de-

plete though melt (e.g., Dickinson, Henderson-
Sellers, and Kennedy 1993). Some recent land
models for climate simulation include subgrid
distributions of snow depth (Liston 2004) and
blowing (Essery and Pomeroy 2004). Snow
models now may use multiple layers to repre-
sent fluxes through the snow (Oleson et al.
2004). Effort also has gone into including and
improving effects of soil freezing and thawing
(Koren et al. 1999; Boone et al. 2000; Warrach,
Mengelkamp, and Raschke 2001; Li and Koike
2003; Boisserie et al. 2006), although per-
mafrost modeling is more limited (Malevsky-
Malevich et al. 1999; Yamaguchi, Noda, and
Kitoh 2005).

Vegetation interacts with snow by covering it,
thereby masking snow’s higher albedo (Betts
and Ball 1997) and retarding spring snowmelt
(Sturm et al. 2005). The net effect is to main-
tain warmer temperatures than would occur
without vegetation masking (Bonan, Pollard,
and Thompson 1992). Vegetation also traps
drifting snow (Sturm et al. 2001), insulating the
soil from subfreezing winter air temperatures
and potentially increasing nutrient release and
enhancing vegetation growth (Sturm et al.
2001). Albedo masking is included in some
land-surface models, but it requires accurate
simulations of snow depth to produce accurate
simulation of surface-atmosphere energy ex-
changes (Strack, Pielke, and Adegoke 2003).

Time-evolving ice sheets and mountain glaciers
are not included in most climate models. Ice
sheets once were thought to be too sluggish to
respond to climate change in less than a century.
However, observations via satellite altimetry,
synthetic aperture radar interferometry, and
gravimetry all suggest rapid dynamic variability
of ice sheets, possibly in response to climatic
warming (Rignot and Kanagaratnam 2006;
Velicogna and Wahr 2006). Most global climate
models to date have been run with prescribed,
immovable ice sheets. Several modeling groups
are now experimenting with the incorporation
of dynamic ice sheet models. Substantial phys-
ical, numerical, and computational improve-
ments, however, are needed to provide reliable
projections of 21st Century ice sheet changes.
Among major challenges are incorporation of a
unified treatment of stresses within ice sheets,
improved methods of downscaling atmospheric
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fields to the finer ice sheet grid, realistic para-
meterizations of surface and subglacial hydrol-
ogy (fast dynamic processes controlled largely
by water pressure and extent at the base of the
ice sheet), and models of ice shelf interactions
with ocean circulation. Ocean models, which
usually assume fixed topography, may need to
be modified to include flow beneath advancing
and retreating ice. Meeting these challenges will
require increased interaction between the
glaciological and climate modeling communi-
ties, which until recently have been largely iso-
lated from each another.

The initial focus of land models was vertical
coupling of the surface with the overlying at-
mosphere. However, horizontal water flow
through river routing has been available in some
models for some time (e.g., Sausen, Schubert,
and Dümenil et al. 1994; Hagemann and Dü-
menil 1998), with spatial resolution of routing
in climate models increasing in more recent ver-
sions (Ducharne et al. 2003). Freezing soil
poses additional challenges for modeling runoff
(Pitman et al. 1999), with more recent work
showing some skill in representing its effects
(Luo et al. 2003; Rawlins et al. 2003; Niu and
Yang 2006).

Work also is under way to couple groundwater
models into land models (e.g., Gutowski et al.
2002; York et al. 2002; Liang, Xie, and Huang
2003; Maxwell and Miller 2005; Yeh and Eltahir
2005). Groundwater potentially introduces
longer time scales of interaction in the climate
system in places where it has contact with veg-
etation roots or emerges through the surface.

Land models encompass spatial scales ranging
from model grid-box size down to biophysical
and turbulence processes operating on scales
the size of leaves. Explicit representation of all
these scales in a climate model is beyond the
scope of current computing systems and the ob-
serving systems that would be needed to pro-
vide adequate model calibration for global and
regional climate. Model fluxes do not represent
a single point but rather the behavior in a grid
box that may be many tens or hundreds of kilo-
meters across. Initially, these grid boxes were
treated as homogeneous units but, starting with
the pioneering work of Avissar and Pielke
(1989), many land models have tiled a grid box

with patches of different land-use and vegeta-
tion types. Although these patches may not in-
teract directly with their neighbors, they are
linked by their coupling to the grid box’s at-
mospheric column. This coupling does not
allow for possible small-scale circulations that
might occur because of differences in surface-
atmosphere energy exchanges among patches
(Segal and Arritt 1992; Segal et al. 1997). Under
most conditions, however, the imprint of such
spatial heterogeneity on the overlying atmos-
pheric column appears to be limited to a few
meters above the surface (e.g., Gutowski, Ötles,
and Chen 1998).

Vertical fluxes linking the surface, canopy, and
near-surface atmosphere generally assume some
form of down-gradient diffusion, although
counter-gradient fluxes can exist in this region
much as in the overlying atmospheric boundary
layer. Some attempts have been made to replace
diffusion with more advanced Lagrangian ran-
dom-walk approaches (Gu et al. 1999; Baldoc-
chi and Harley 1995; Wilson et al. 2003).

Topographic variation within a grid box usually
is ignored in land modeling. Nevertheless, im-
plementing detailed river-routing schemes re-
quires accurate digital elevation models (e.g.,
Hirano, Welch, and Lang 2003; Saraf et al.
2005). In addition, some soil water schemes in-
clude effects of land slope on water distribution
(Choi, Kumar, and Liang 2007) and surface ra-
diative fluxes (Zhang et al. 2006).

Validation of land models, especially globally,
remains a problem due to lack of measurements
for relevant quantities such as soil moisture and
energy, momentum, moisture flux, and carbon
flux. The PILPS project (Henderson-Sellers et
al. 1995) has allowed detailed comparisons of
multiple models with observations at points
around the world having different climates, thus
providing some constraint on the behavior of
land models. Global participation in PILPS has
led to more understanding of differences among
schemes and improvements. Compared to pre-
vious generations, the latest land surface mod-
els exhibit relatively smaller differences from
current observation-based estimates of the
global distribution of surface fluxes, but the re-
liability of such estimates remains elusive (Hen-
derson-Sellers et al. 2003). River routing can
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provide a diagnosis vs observations of a land
model’s spatially distributed behavior (Kattsov
et al. 2000). Remote sensing has been useful for
calibrating models developed to exploit it but
generally has not been used for model valida-
tion. Regional observing networks that aspire to
give Earth system observations, such as some
mesonets in the United States, offer promise of
data from spatially distributed observations of
important fields for land models.

Land modeling has developed in other disci-
plines roughly concurrently with advances in
climate models. Applications are wide ranging
and include detailed models used for planning
water resources (Andersson et al. 2006), man-
aging ecosystems (e.g., Tenhunen et al. 1999),
estimating crop yields (e.g., Jones and Kiniry
1986; Hoogenboom, Jones, and Boote 1992),
simulating ice-sheet behavior (Peltier 2004),
and projecting land use such as transportation
planning (e.g., Schweitzer 2006). As suggested
by this list, widely disparate applications have
developed from differing scales of interest and
focus. Development in some other applications
has informed advances in land models for cli-
mate simulation, as in representation of vegeta-
tion and hydrologic processes. Because land
models do not include all climate system fea-
tures, they can be expected in future to engage
other disciplines and encompass a wider range
of processes, especially as resolution increases.

2.4 SEA-ICE MODELS

Most climate models include sea-ice compo-
nents that have both dynamic and thermody-
namic elements. That is, models include the
physics governing ice movement as well as that
related to heat and salt transfer within the ice.
While sea ice in the real world appears as ice
floes on the scale of meters, in climate models
sea ice is treated as a continuum with an effec-
tive large-scale rheology describing the rela-
tionship between stress and flow.

Rheologies commonly in use are the standard
Hibler viscous-plastic (VP) rheology (Hibler
1979; Zhang and Rothrock 2000) and the more-
complex elastic-viscous-plastic (EVP) rheology
of Hunke and Dukowicz (1997), designed pri-
marily to improve the computational efficiency

of ice models. The EVP method explicitly
solves for the ice-stress tensor, while the VP so-
lution uses an implicit iterative approach. As ex-
amples, the GFDL models (Delworth et al. 2006
) and Community Climate System Model, Ver-
sion 3 (CCSM3) (Collins et al. 2006a) use the
EVP rheology, while the GISS models use the
VP implementation.

The thermodynamic portions of sea ice models
also vary. Earlier generations of climate models
generally used the sea ice thermodynamics of
Semtner (1976), which includes one snow layer
and two ice layers with constant heat conduc-
tivities together with a simple parameterization
of brine (salt) content. The GFDL climate mod-
els continue to use this but also include the in-
teractions between brine content and heat
capacity (Winton 2000). The CCSM3 and GISS
models use variations (Bitz and Lipscomb 1999,
Briegleb et al. 2002) incorporating additional
physical processes within the ice, such as the
melting of internal brine regions. Different
models define snow and ice layers and ice cat-
egories differently, but all include an open water
category. Typically, ice models share the grid
structure of the underlying ocean model.

The albedo (proportion of incident sunlight re-
flected from a surface) of snow and ice plays a
significant role in the climate system. Sea-ice
models parameterize the albedo using expres-
sions based on a mix of radiative transfer the-
ory and empiricism. Figure 2.3 from Curry,
Schramm, and Ebert (1995) illustrates sea-ice
system interrelations and how the albedo is a
function of snow or ice thickness, ice extent,
open water, and surface temperature, and other
factors. Models treat these factors in similar
ways but vary on details. For example, the
CCSM3 sea-ice component does not include de-
pendence on solar elevation angle (Briegleb et
al. 2002), but the GISS model does (Schmidt et
al. 2006). Both models include the contribution
of melt ponds (Ebert and Curry 1993; Schramm
et al. 1997). The GFDL model follows Briegleb
et al. (2002) but accounts for different effects of
the different wavelengths comprising sunlight
(Delworth et al. 2006).  
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2.5 COMPONENT COUPLING
AND COUPLED MODEL
EVALUATION

The climate system’s complexity and our in-
ability to resolve all relevant processes in mod-
els result in a host of choices for development
teams. Differing expertise, experience, and in-
terests result in distinct pathways for each cli-
mate model. While we eventually expect to see
model convergence forced by increasing in-
sights into the climate system’s workings, we
are still far from that limit today in several im-
portant areas. Given this level of uncertainty,
multiple modeling approaches clearly are
needed. Models vary in details primarily be-
cause development teams have different ideas
concerning underlying physical mechanisms
relevant to the system’s less-understood fea-
tures. In the following, we describe some key
aspects of model development by the three U.S.
groups that contributed models to the IPCC
Fourth Assessment (IPCC 2007). Particular
focus is on points most relevant for simulating
the 20th Century global mean temperature and
on the model’s climate sensitivity.

2.5.1 NOAA GFDL Model-
Development Path

NOAA’s GFDL conducted a thorough restruc-
turing of its atmospheric and climate models for
more than 5 years prior to its delivery of mod-
els to the CMIP3 database in 2004. This was
done partly in response to the need for modern-
izing software engineering and partly in re-
sponse to new ideas in modeling the
atmosphere, ocean, and sea ice. Differences be-
tween the resulting models and the previous
generation of climate models at GFDL are var-
ied and substantial. Mapping out exactly why
climate sensitivity and other considerations of
climate simulations differ between these two
generations of models would be very difficult
and has not been attempted. Unlike the earlier
generation, however, the new models do not use
flux adjustments; some other improvements are
discussed below.

The new atmospheric models developed at
GFDL for global warming studies are referred
to as AM2.0 and AM2.1 (GFDL Atmospheric
Model Development Team 2004). Key points of
departure from previous GFDL models are the
adoption of a new numerical core for solving
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Figure 2.3. Schematic
Diagram of Sea Ice–
Albedo Feedback
Mechanism. 
Arrow direction indicates
the interaction direction.
The “+” signs indicate
positive interaction (i.e.,
increase in the first
quantity leads to increase
in the second quantity),
and the “–” signs indicate
negative interaction (i.e.,
increase in the first
quantity leads to decrease
in the second quantity).
The “+/–” signs indicate
either that the interaction
sign is uncertain or that
the sign changes over the
annual cycle. [From Fig. 6
in J.A. Curry, J. Schramm,
and E.E. Ebert 1995: On
the sea ice albedo climate
feedback mechanism, J.
Climate, 8, 240–247.
Reproduced by permission
of the American
Meteorological Society.]
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fluid dynamical equations for the atmosphere,
the inclusion of liquid and ice concentrations as
prognostic variables, and new parameterizations
for moist convection and cloud formation.
Much atmospheric development was based on
running the model over observed sea-surface
temperature and sea-ice boundary conditions
from 1980 to 2000, with a focus on both the
mean climate and the atmospheric response to
El Niño–Southern Oscillation (ENSO) variabil-
ity in the tropical Pacific. Given the basic model
configuration, several subgrid closures were
varied to optimize climate features. Modest im-
provements in the midlatitude wind field were
obtained by adjusting the “orographic gravity
wave drag,” which accounts for the effects of
force exerted on the atmosphere by unresolved
topographic features. Substantial improvements
in simulating tropical rainfall and its response
to ENSO were the result of parameter opti-
mization as well, especially the treatment of ver-
tical transport of horizontal momentum by
moist convection.

The ocean model chosen for this development is
the latest version of the modular ocean model
(MOM) developed over several decades at
GFDL. Notable new features in this version are
a grid structure better suited to simulating the
Arctic Ocean and a framework for subgrid-scale
mixing that avoids unphysical mixing among
oceanic layers of differing densities (Gent and
McWilliams 1990; Griffies 1998). A new sea-
ice model includes an EVP large-scale effective
rheology that has proven itself in the past
decade in several models and multiple ice thick-
nesses in each grid box. The land model chosen
is relatively simple, with vertically resolved soil
temperature but retaining the “bucket hydrol-
ogy” from the earlier generation of models.

The resulting climate model was studied, re-
structured, and tuned for an extended period,
with particular interest in optimizing the struc-
ture and frequency of the model’s spontaneously
generated El Niño events, minimizing surface
temperature biases, and maintaining an Atlantic
overturning circulation of sufficient strength.
During this development phase, climate sensi-
tivity was monitored by integrating the model
to equilibrium with doubled CO2 when coupled
to a “flux-adjusted” slab ocean model. A single
model modification reduced the model’s sensi-

tivity range from 4.0 to 4.5 K to between 2.5
and 3.0 K, as discussed further in Chapter 4.
The change responsible for this reduction was
inclusion of a new model of mixing in the plan-
etary boundary near the Earth’s surface. GFDL
included the mixing model because it generated
more-realistic boundary-layer depths and near-
surface relative humidities. Sensitivity reduc-
tion resulted from modifications to the
low-level cloud field; the size of this reduction
was not anticipated.

Aerosol distributions used by the model were
computed offline from the MOZART II model
as described in Horowitz et al. (2003). No at-
tempt was made to simulate indirect aerosol ef-
fects (interactions between clouds and aerosols),
as confidence in the schemes tested was
deemed insufficient. In 20th Century simula-
tions, solar variations followed the prescription
of Lean, Beer, and Bradley (1995), while vol-
canic forcing was based on Sato et al. (1993).
Stratospheric ozone was prescribed, with the
Southern Hemisphere ozone hole prescribed in
particular, in 20th Century simulations. A new
detailed land-use history provided a time his-
tory of vegetation types.

Final tuning of the model’s global energy bal-
ance, using two parameters in the cloud predic-
tion scheme, was conducted by examining
control simulations of the fully coupled model
using fixed 1860 and 1990 forcings (see box,
Tuning the Global Mean Energy Balance). The
resulting model is described in Delworth et al.
(2006) and Gnanadesikan et al. (2006). IPCC-
relevant runs of this model (CM2.0) were pro-
vided to the CMIP3–IPCC archive. Simulations
of the 20th Century with time-varying forcings
provided to the database and described in Knut-
son et al. (2006) were the first of this kind gen-
erated with this model. The model was not
retuned, and no iteration of the aerosol or any
other time-varying forcings followed these ini-
tial simulations.

Model development proceeded in the interim,
and a new version emerged rather quickly in
which the atmospheric model’s numerical core
was replaced by a “finite-volume” code (Lin
and Rood 1996). Treatment of wind fields near
the surface improved substantially, which in
turn resulted in enhanced extratropical ocean
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circulation and temperatures. ENSO variability
increased in this model to unrealistically large
values; however, the ocean code’s efficiency
also improved substantially. With retuning of
the clouds for global energy balance, the new
model CM2.1 was deemed to be an improved
model over CM2.0 in several respects, warrant-
ing the generation of a new set of database runs.
CM2.1, when run with a slab-ocean model, was
found to have somewhat increased sensitivity.
However, transient climate sensitivity—the
global mean warming at the time of CO2 dou-
bling in a fully coupled model with 1% a year
increase in CO2—actually is slightly smaller
than in CM2.0. Solar, aerosol, volcanic, and
greenhouse gas forcings are identical in the two
models.

2.5.2 Community Climate System
Model-Development Path

CCSM3 was released to the climate community
in June 2004. CCSM3 is a coupled climate
model with components representing the at-
mosphere, ocean, sea ice, and land surface con-
nected by a flux coupler. CCSM3 is designed to

produce realistic simulations over a wide range
of spatial resolutions, enabling inexpensive sim-
ulations lasting several millennia or detailed
studies of continental-scale dynamics, variabil-
ity, and climate change. Twenty-six papers doc-
umenting all aspects of CCSM3 and runs
performed with it were published in a special
issue of the Journal of Climate 19(11) (June
2006). The atmospheric component of CCSM3
is a spectral model. Three different resolutions
of CCSM3 are supported. The highest resolu-
tion is the configuration used for climate-
change simulations, with a T85 grid for
atmosphere and land and a grid with around 1º
resolution for ocean and sea ice but finer merid-
ional resolution near the equator. The second
resolution is a T42 grid for atmosphere and land
with 1º ocean and sea-ice resolution. A lower-
resolution version, designed for paleoclimate
studies, has T31 resolution for atmosphere and
land and a 3º version of ocean and sea ice.

The new CCSM3 version incorporates several
significant improvements in physical parame-
terizations. Enhancements in model physics are
designed to reduce several systematic biases in

A procedure common to all comprehensive climate models is tuning the global mean energy bal-
ance. A climate model must be in balance at top of atmosphere (TOA) and globally averaged to
within a few tenths of a W/m2 in its control (pre-1860) climate if it is to avoid temperature drifts
in 20th and 21st century simulations that would obscure response to imposed changes in green-
house, aerosol, volcanic, and solar forcings. Especially because of difficulty in modeling clouds but
also even in clear sky, untuned models do not currently possess this level of accuracy in their ra-
diative fluxes. Untuned imbalances more typically range up to 5 W/m2. Parameters in the cloud
scheme are altered to create a balanced state, often taking care that individual components of this
balance—the absorbed solar flux and emitted infrared flux—are individually in agreement with ob-
servations, since these help ensure the correct distribution of heating between atmosphere and
ocean. This occasionally is referred to as “final tuning” the model to distinguish it from various
choices made for other reasons while the model is being configured.

The need for final tuning does not preclude the use of these models for global warming simulations
in which radiative forcing itself is on the order of several W/m2. Consider, for example, the Ra-
maswamy et al. (2001) study on the effects of modifying the “water vapor continuum” treatment in
a climate model. This is an aspect of the radiative transfer algorithm in which there is significant un-
certainty. While modifying continuum treatment can change the TOA balance by more than 1 W/m2,
the effect on climate sensitivity is found to be insignificant. The change in radiative transfer in this
instance alters the outgoing infrared flux by roughly 1%, and it affects the sensitivity (by changing
the flux derivative with respect to temperature) by roughly the same percentage. A sensitivity change
of this magnitude, say from 3 K to 3.03 K, is of little consequence given uncertainties in cloud feed-
backs. The strength of temperature-dependent feedbacks, not errors in mean fluxes per se, is of par-
ticular concern in estimating climatic responses.

Tuning the Global Mean Energy Balance
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mean climate produced by previous CCSM ver-
sions. These enhancements include new treat-
ments of cloud processes, aerosol radiative
forcing, land-atmosphere fluxes, ocean mixed-
layer processes, and sea-ice dynamics. Signifi-
cant improvements are shown in sea-ice
thickness, polar radiation budgets, tropical sea-
surface temperatures, and cloud radiative ef-
fects. CCSM3 produces stable climate
simulations of millennial duration without ad
hoc adjustments to fluxes exchanged among
component models. Nonetheless, there are still
systematic biases in ocean-atmosphere fluxes in
coastal regions west of continents, the spectrum
of ENSO variability, spatial distribution of pre-
cipitation in tropical oceans, and continental
precipitation and surface air temperatures. Work
is under way to produce the next version of
CCSM, which will reduce these biases further,
and to extend CCSM to a more accurate and
comprehensive model of the complete Earth cli-
mate system.

CCSM3’s climate sensitivity is weakly depend-
ent on the resolution used. Equilibrium temper-
ature increase due to doubling carbon dioxide,
using a slab-ocean model, is 2.71°C, 2.47°C,
and 2.32°C, respectively, for the T85, T42, and
T31 atmosphere resolutions. The transient cli-
mate temperature response to doubling carbon
dioxide in fully coupled integrations is much
less dependent on resolution, being 1.50°C,
1.48°C, and 1.43°C, respectively, for the T85,
T42, and T31 atmosphere resolutions (Kiehl et
al. 2006).

The following CCSM3 runs were submitted for
evaluation for the IPCC Fourth Assessment Re-
port and to the Program for Climate Model Di-
agnosis and Intercomparison (called PCMDI)
for dissemination to the climate scientific com-
munity: long, present day, and 1870 control
runs; an ensemble of eight 20th Century runs;
and smaller ensembles of future scenario runs
for the A2, A1B, and B1 scenarios and for the
20th Century commitment run where carbon
dioxide levels were kept at their 2000 values.
The control and 20th Century runs have been
documented and analyzed in several papers in
the Journal of Climate special issue, and future
climate change projections using CCSM3 have
been documented by Meehl et al. (2006).

2.5.3 GISS Development Path

The most recent version of the GISS atmos-
pheric GCM, ModelE, resulted from a substan-
tial reworking of the previous version, Model
II′. Although model physics has become more
complex, execution by the user is simplified as
a result of modern software engineering and im-
proved model documentation embedded within
the code and accompanying web pages. The
model, which can be downloaded from the
GISS website by outside users, is designed to
run on myriad platforms ranging from laptops
to a variety of multiprocessor computers, partly
because of NASA’s rapidly shifting computing
environment. The most recent (post-AR4) ver-
sion can be run on an arbitrarily large number of
processors.

Historically, GISS has eschewed flux adjust-
ment. Nonetheless, the net energy flux at the top
of atmosphere (TOA) and surface has been re-
duced to near zero by adjusting threshold rela-
tive humidity for water and ice cloud formation,
two parameters that otherwise are weakly con-
strained by observations. Near-zero fluxes at
these levels are necessary to minimize drift of
either the ocean or the coupled climate.

To assess climate-response sensitivity to treat-
ment of the ocean, ModelE has been coupled to
a slab-ocean model with prescribed horizontal
heat transport, along with two ocean GCMs.
One GCM, the Russell ocean (Russell, Miller,
and Rind 1995), has 13 vertical layers and hor-
izontal resolution of 4º latitude by 5º longitude
and is mass conserving (rather than volume
conserving like the GFDL MOM). Alterna-
tively, ModelE is coupled to the Hybrid Coor-
dinate Ocean Model (HYCOM), an isopycnal
model developed originally at the University of
Miami (Bleck et al. 1992). HYCOM has 2º lat-
itude by 2º longitude resolution at the equator,
with latitudinal spacing decreasing poleward
with the cosine of latitude. A separate rectilin-
ear grid is used in the Arctic to avoid polar sin-
gularity and joins the spherical grid around
60°N.

Climate sensitivity to CO2 doubling depends
upon the ocean model due to differences in sea
ice. Climate sensitivity is 2.7°C for the slab-
ocean model and 2.9°C for the Russell ocean
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GCM (Hansen et al. 2005). As at GFDL and
CCSM, no effort is made to match a particular
sensitivity, nor is the sensitivity or forcing ad-
justed to match 20th Century climate trends
(Hansen et al. 2007). Aerosol forcing is calcu-
lated from prescribed concentration, computed
offline by a physical model of the aerosol life
cycle. In contrast to GFDL and NCAR models,
ModelE includes a representation of the aerosol
indirect effect. Cloud droplet formation is re-
lated empirically to the availability of cloud
condensation nuclei, which depends upon the
prescribed aerosol concentration (Hansen et al.
2005; Menon and Del Genio 2007).

Flexibility is emphasized in model development
(Schmidt et al. 2006). ModelE is designed for a
variety of applications ranging from simulation
of stratospheric dynamics and middle-atmos-
phere response to solar forcing to projection of
21st Century trends in surface climate. Horizon-
tal resolution typically is 4º latitude by 5º lon-
gitude, although twice that resolution is used
more often for studies of cloud processes. The
model top has been raised from 10 mb (as in the
previous Model II') to 0.1 mb, so the top has less
influence on stratospheric circulation. Coding
emphasizes “plug-and-play” structure, so the
model can be adapted easily for future needs such
as fully interactive carbon and nitrogen cycles.

Model development is devoted to improving the
realism of individual model parameterizations,
such as the planetary boundary layer or sea-ice
dynamics. Because of the variety of applica-
tions, relatively little emphasis is placed on op-
timizing the simulation of specific phenomena
such as El Niño or the Atlantic thermohaline
circulation; as noted above, successful repro-
duction of one phenomenon usually results in a
suboptimal simulation of another. Nonetheless,
some effort was made to reduce biases in previ-
ous model versions that emerged from the in-
teraction of various model features such as
subtropical low clouds, tropical rainfall, and
variability of stratospheric winds. Some model
adjustments were structural, as opposed to the
adjustment of a particular parameter—for ex-
ample, introduction of a new planetary bound-
ary layer parameterization that reduced
unrealistic cloud formation in the lowest model
level (Schmidt et al. 2006).

Because of their uniform horizontal coverage,
satellite retrievals are emphasized for model
evaluation like Earth Radiation Budget Experi-
ment fluxes at TOA, Microwave Sounding Unit
channels 2 (troposphere) and 4 (stratosphere)
temperatures, and International Satellite Cloud
Climatology Project (ISCCP) diagnostics. Com-
parison to ISCCP is through a special algorithm
that samples GCM output to mimic data collec-
tion by an orbiting satellite. For example, high
clouds may include contributions from lower
levels in both the model and the downward-
looking satellite instrument. This satellite per-
spective within the model allows a rigorous
comparison to observations. In addition to satel-
lite retrievals, some GCM fields like zonal wind
are compared to in situ observations adjusted by
European Center for Medium Range Weather
Forecasts’ 40-year reanalysis data (Uppala et al.
2005). Surface air temperature is taken from the
Climate Research Unit gridded global surface
temperature dataset (Jones et al. 1999).

2.5.4 Common Problems

The CCSM and GFDL development teams met
several times to compare experiences and dis-
cuss common problems in the two models. A
subject of considerable discussion and concern
was the tendency for an overly strong “cold
tongue” to develop in the eastern equatorial Pa-
cific Ocean and for associated errors to appear
in the pattern of precipitation in the Inter-Trop-
ical Convergence Zone (often referred to as the
“double-ITCZ problem”). Meeting attendees
noted that the equilibrium climate sensitivities
of the two models to doubled atmospheric car-
bon dioxide (see Chapter 4) had converged from
earlier generations in which the NCAR model
was on the low end of the canonical sensitivity
range of 1.5 to 4.5 K, while the GFDL model
was near the high end. This convergence in
global mean sensitivity was considered coinci-
dental because no specific actions were taken to
engineer convergence. It was not accompanied
by any noticeable convergence in cloud-feed-
back specifics or in the regional temperature
changes that make up global mean values.
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2.6 REDUCTIVE VS HOLISTIC
EVALUATION OF MODELS

To evaluate models, appreciation of their struc-
ture is necessary. For example, discussion of cli-
matic response to increasing greenhouse gases
is intimately related to the question of how in-
frared radiation escaping to space is controlled.
When summarizing results from climate mod-
els, modelers often speak and think in terms of
a simple energy balance model in which the
global mean infrared energy escaping to space
has a simple dependence on global mean sur-
face temperature. Water vapor or cloud feed-
backs often are incorporated into such global
mean energy balance models with simple rela-
tionships that can be tailored easily to generate
a desired result. In contrast, Fig. 2.4 shows a
snapshot at an instant when infrared radiation is
escaping to space in the kind of AGCM dis-
cussed in this report. Detailed distributions of
clouds and water vapor simulated by the model
and transported by the model’s evolving wind
fields create complex patterns in space and time
that, if the simulation is sufficiently realistic, re-
semble images seen from satellites viewing
Earth at infrared wavelengths.

As described above, AGCMs evolve the state of
atmosphere and land system forward in time,

starting from some initial condition. They con-
sist of rules that generate the state of a variable
(e.g., temperature, wind, water vapor, clouds,
rainfall rate, water storage in the land, and land-
surface temperature) from its preceding state
roughly a half-hour earlier. By this process a
model simulates the weather over the Earth. To
change the way the model’s infrared radiation
reacts to increasing temperatures, the rules
would have to be modified.

One goal of climate modeling is to decrease em-
piricism and base models as much as possible
on well-established physical principles. This
goal is pursued primarily by decomposing the
climate system into a number of relatively sim-
ple processes and interactions. Modelers focus
on rules governing the evolution of these indi-
vidual processes rather than working with more
holistic concepts such as global mean infrared
radiation escaping to space, average summer-
time rainfall over Africa, and average winter-
time surface pressure over the Arctic. These are
all outcomes of the model, determined by the
set of reductive rules that govern the model’s
evolution.

Suppose the topic under study is how ocean
temperatures affect rainfall over Africa. An em-
pirical statistical model could be developed

Figure 2.4. A Snapshot
in Time of Infrared
Radiation Escaping to
Space in a Version of
Atmospheric Model
AM2 Constructed at
NOAA’s Geophysical
Fluid Dynamics
Laboratory (GFDL
2004). 
The largest amount of energy
emitted is in the darkest
areas, and the least is in the
brightest areas. This version of
the atmospheric model has
higher resolution than that
used for simulations in the
CMIP3 archive (50 km rather
than 200 km), but, other than
resolution, it uses the same
numerical algorithm. The
resolution is typical in many
current studies with
atmosphere-only simulations.
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using observations and standard statistical tech-
niques in which the model is tuned to these ob-
servations. Alternatively, one can use an AGCM
giving results like those pictured in Fig. 2.4. An
AGCM does not deal directly with high-level
climate output such as African rainfall averaged
over some period. Rather, it attempts to simu-
late the climate system’s inner workings or dy-
namics at a much finer level of granularity. To
the extent that the simulation is successful and
convincing, the model can be analyzed and ma-
nipulated to uncover the detailed physical mech-
anisms underlying the connection between
ocean temperatures and rainfall over Africa. The
AGCM-simulated connection may or may not
be as good as the fit obtained with the explicitly
tuned statistical model, but a reductive model
ideally provides a different level of confidence
in its explanatory and predictive power. See, for
example, Hoerling et al. (2006) for an analysis
of African rainfall and ocean temperature rela-
tionships in a set of AGCMs.

Our confidence in the explanatory and predic-
tive power of climate models grows with their
ability to simulate many climate system features
simultaneously with the same set of physically
based rules. When a model’s ability to simulate
the evolution of global mean temperature over
the 20th Century is evaluated, it is important to
try to make this evaluation in the context of the
model’s ability to spontaneously generate El
Niño variability of the correct frequency and
spatial structure, for example, and to capture the
effects of El Niño on rainfall and clouds. Sim-
ulation quality adds confidence in the reductive
rules being used to generate simultaneous sim-
ulation of all these phenomena.

A difficulty to which we will return frequently
in this report is that of relating climate-simula-
tion qualities to a level of confidence in the
model’s ability to predict climate change.

2.7 USE OF MODEL METRICS

Recently, objective evaluation has exploded
with the wide availability of model simulation
results in the CMIP3 database (Meehl et al.
2006). One important area of research is in the
design of metrics to test the ability of models to
simulate well-observed climate features (Re-
ichler and Kim 2008; Gleckler, Taylor, and Dou-

triaux 2008). Aspects of observed climate that
must be simulated to ensure reliable future pre-
dictions are unclear. For example, models that
simulate the most realistic present-day temper-
atures for North America may not generate the
most reliable projections of future temperature
changes. Projected climate changes in North
America may depend strongly on temperature
changes in the tropical Pacific Ocean and the
manner in which the jet stream responds to
them. The quality of a model’s simulation of air-
sea coupling over the Pacific might be a more
relevant metric. However, metrics can provide
guidance about overall strengths and weak-
nesses of individual models, as well as the gen-
eral state of modeling.

The use of metrics also can explain why the
“best” climate model cannot be chosen at this
time. In Fig. 2.5 below, each colored triangle
represents a different metric for which each
model was evaluated (e.g., “ts” represents sur-
face temperature). The figure displays the rela-
tive error value for a variety of metrics for each
model, represented by a vertical column above
each tick mark on the horizontal axis. Values
less than zero represent a better-than-average
simulation of a particular field measured by the
metric, while values greater than zero show
models with errors greater than the average. The
black triangles connected by the dashed line
represent the normalized sum from the errors of
all 23 fields. The models were ranked from left
to right based on the value of this total error. As
can be seen, models with the lowest total errors
tend to score better than average in most indi-
vidual metrics but not in all. For an individual
application, the model with the lowest total er-
rors may not be the best choice.

2.8 CLIMATE SIMULATIONS
DISCUSSED IN THIS REPORT

Three types of climate simulation discussed in
this report are described below. They differ ac-
cording to which climate-forcing factors are
used as model input.

Control runs use constant forcing. The sun’s
energy output and the atmospheric concentra-
tions of carbon dioxide and other gases and
aerosols do not change in control runs. As with
other types of climate simulation, day-night and
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seasonal variations occur, along with internal
“oscillations” such as ENSO. Other than these
variations, the control run of a well-behaved cli-
mate model is expected eventually to reach a
steady state.

Values of control-run forcing factors often are
set to match present-day conditions, and model
output is compared with present-day observa-
tions. Actually, today’s climate is affected not
only by current forcing but also by the history of
forcing over time—in particular, past emissions
of greenhouse gases. Nevertheless, present-day
control-run output and present-day observations
are expected to agree fairly closely if models are
reasonably accurate. We compare model control
runs with observations in Chapter 5.

Idealized climate simulations are aimed at un-
derstanding important processes in models and
in the real world. They include experiments in
which the amount of atmospheric carbon diox-
ide increases at precisely 1% per year (about
twice the current rate) or doubles instanta-
neously. Carbon dioxide doubling experiments
typically are run until the simulated climate
reaches a steady state of equilibrium with the
enhanced greenhouse effect. Until the mid-
1990s, idealized simulations often were em-
ployed to assess possible future climate changes
including human-induced global warming. Re-
cently, however, more realistic time-evolving
simulations (defined immediately below) have
been used for making climate predictions. We
discuss idealized simulations and their implica-
tions for climate sensitivity in Chapter 4.

Figure 2.5. Model Metrics for 23 Different Climate Fields. 
Values less than 0 indicate an error less than the average CMIP3 model, while values greater than 0 are
more than the average. The black triangles connected by the black line show a total score obtained by
averaging all 23 fields. Each tick mark represents a different model. [Figure adapted from P.J. Gleckler, K.E.
Taylor, and C. Doutriaux 2008: Performance metrics for climate. J. Geophysical Research, in press.
Reproduced by permission of the American Geophysical Union (AGU).]
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Time-dependent climate-forcing simulations
are the most realistic, especially for eras in
which climate forcing is changing rapidly, such
as the 20th and 21st centuries. Input for 20th Cen-
tury simulations includes observed time-vary-
ing values of solar energy output, atmospheric
carbon dioxide, and other climate-relevant gases
and aerosols, including those produced in vol-
canic eruptions. Each modeling group uses its
own best estimate of these factors. Significant
uncertainties occur in many of them, especially
atmospheric aerosols, so different models use
different input for their 20th Century simula-
tions. We discuss uncertainties in climate-
forcing factors in Chapter 4 and 20th Century
simulations in Chapter 5 after comparing con-
trol runs with observations.

Time-evolving climate forcing also is used as
input for modeling future climate change. This
subject is discussed in CCSP Synthesis and As-
sessment Product 3.2. Finally, we mention for
the record simulations of the distant past (vari-
ous time periods ranging from early Earth up to
the 19th Century). These simulations are not
discussed in this report, but some of them have
been used to loosely “paleocalibrate” simula-
tions of the more recent past and the future
(Hoffert and Covey 1992; Hansen et al. 2006;
Hegerl et al. 2006).



Climate Models: An Assessment of Strengths and Limitations

Added Value of 
Regional Climate 
Model Simulations

C
H

A
PT

ER
3

31

3.1 TYPES OF DOWNSCALING SIMULATIONS

This section focuses on downscaling using three-dimensional models based on fundamental con-

servation laws [i.e., numerical models with foundations similar to general circulation models

(GCMs)]. A later section of the chapter discusses an alternative method, statistical downscaling.

There are three primary approaches to numeri-
cal downscaling:

• Limited-area models (Giorgi and Mearns
1991, 1999; McGregor 1997; Wang et al.
2004).

• Stretched-grid models (e.g., Déqué and
Piedelievre 1995; Fox-Rabinovitz et al.
2001, 2006).

• Uniformly high resolution atmospheric
GCMs (AGCMs) (e.g., Brankovic and Gre-
gory 2001; May and Roeckner 2001; Duffy
et al. 2003; Coppola and Giorgi 2005).

Limited-area models, also known as regional
climate models (RCMs), have the most wide-
spread use. The third method sometimes is
called “time-slice” climate simulation because
the AGCM simulates a portion of the period
represented by the coarser-resolution parent
GCM that supplies the model’s boundary con-
ditions. All three methods use interactive land
models, but sea-surface temperatures and sea
ice generally are specified from observations or
an atmosphere-ocean GCM (AOGCM). All
three also are used for purposes beyond down-

scaling global simulations, most especially for
studying climatic processes and interactions on
scales too fine for typical GCM resolutions.

As limited-area models, RCMs cover only a
portion of the planet, typically a continental do-
main or smaller. They require lateral boundary
conditions (LBCs), obtained from observations
such as atmospheric analyses (e.g., Kanamitsu
et al. 2002; Uppala et al. 2005) or a global sim-
ulation. There has been limited two-way cou-
pling wherein an RCM supplies part of its
output back to the parent GCM (Lorenz and
Jacob 2005). Simulations with observation-
based boundary conditions are used not only to
study fine-scale climatic behavior but also to
help segregate GCM errors from those intrinsic
to the RCM when performing climate change
simulations (Pan et al. 2001). RCMs also may
use grids nested inside a coarser RCM simula-
tion to achieve higher resolution in subregions
(e.g., Liang, Kunkel, and Samel 2001; Hay et
al. 2006).

Stretched-grid models, like high-resolution
AGCMs, are global simulations but with spatial
resolution varying horizontally. The highest res-
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olution may focus on one (e.g., Déqué and
Piedelievre 1995; Hope, Nicholls, and McGre-
gor 2004) or a few regions (e.g., Fox-Rabi-
novitz, Takacs, and Govindaraju 2002). In some
sense, the uniformly high resolution AGCMs
are the upper limit of stretched-grid simulations
in which the grid is uniformly high everywhere.

Highest spatial resolutions are most often sev-
eral tens of kilometers, although some (e.g.,
Grell et al. 2000a, b; Hay et al. 2006) have sim-
ulated climate with resolutions as small as a few
kilometers using multiple nested grids. Duffy et
al. (2003) have performed multiple AGCM
time-slice computations using the same model
to simulate resolutions from 310 km down to 55
km. Higher resolution generally yields im-
proved climate simulation, especially for fields
such as precipitation that have high spatial vari-
ability. For example, some studies show that
higher resolution does not have a statistically
significant advantage in simulating large-scale
circulation patterns but does yield better mon-
soon precipitation forecasts and interannual
variability (Mo et al. 2005) and precipitation in-
tensity (Roads, Chen, and Kanamitsu 2003).

Improvement in results, however, is not guaran-
teed: Hay et al. (2006) find deteriorating timing
and intensity of simulated precipitation vs ob-
servations in their inner, high-resolution nests,
even though the inner nest improves topography
resolution. Extratropical storm tracks in a time-
slice AGCM may shift poleward relative to the
coarser parent GCM (Stratton 1999; Roeckner
et al. 2006) or to lower-resolution versions of
the same AGCM (Brankovic and Gregory
2001); thus these AGCMs yield an altered cli-
mate with the same sea-surface temperature dis-
tribution as the parent model.

Spatial resolution affects the length of simula-
tion periods because higher resolution requires
shorter time steps for numerical stability and ac-
curacy. Required time steps scale with the in-
verse of resolution and can be much smaller
than AOGCM time steps. Increases in resolu-
tion most often are applied to both horizontal
directions, meaning that computational demand
varies inversely with the cube of resolution.
Several RCM simulations have lasted 20 to 30
years (Christensen, Carter, and Giorgi 2002;

Leung et al. 2004; Plummer et al. 2006) and
even as long as 140 years (McGregor 1999)
with no serious drift away from reality. Even so,
the RCM, stretched-grid, and time-slice AGCM
simulations typically last only months to a few
years. Vertical resolution usually does not change
with horizontal resolution, although Lindzen and
Fox-Rabinovitz (1989) and Fox-Rabinovitz and
Lindzen (1993) have expressed concerns about
the adequacy of vertical resolution relative to
horizontal resolution in climate models.

Higher resolution in RCMs and stretched-grid
models also must satisfy numerical constraints.
Stretched-grid models whose ratio of coarsest-
to-finest resolution exceeds a factor of roughly
3 are likely to produce inaccurate simulation
due to truncation error (Qian, Giorgi, and Fox-
Rabinovitz 1999). Similarly, RCMs will suffer
from incompletely simulated energy spectra and
thus loss of accuracy if their resolution is about
12 times or more finer than the resolution of the
LBC source, which may be coarser RCM grids
(Denis et al. 2002; Denis, Laprise, and Caya
2003; Antic et al. 2004, 2006; Dimitrijevic and
Laprise 2005). In addition, these same studies
indicate that LBCs should be updated more fre-
quently than twice per day.

Additional factors also govern ingestion of
LBCs by RCMs. LBCs are most often ingested
in RCMs by damping the model’s state toward
LBC fields in a buffer zone surrounding the do-
main of interest (Davies 1976; Davies and
Turner 1977). If the buffer zone is only a few
grid points wide, the interior region may suffer
phase errors in simulating synoptic-scale waves
(storm systems), with resulting error in the over-
all regional simulation (Giorgi, Marinucci, and
Bates 1993). Spurious reflections also may
occur in boundary regions (e.g., Miguez-
Macho, Stenchikov, and Robock 2005). RCM
boundaries should be where the driving data are
of optimum accuracy (Liang, Kunkel, and
Samel 2001), but placing the buffer zone in a
region of rapidly varying topography can induce
surface-pressure errors. These errors result from
mismatch between the smooth topography im-
plicit in the coarse resolution driving the data
and the varying topography resolved by the
model (Hong and Juang 1998). Domain size
also may influence RCM results. If a domain is



too large, the model’s interior flow may drift
from the large-scale flow of the driving dataset
(Jones, Murphy, and Noguer 1995). However,
too small a domain overly constrains interior
dynamics, preventing the model from generat-
ing appropriate response to interior mesoscale-
circulation and surface conditions (Seth and
Giorgi 1998). RCMs appear to perform well for
domains roughly the size of the contiguous
United States. Figure 3.1 shows that the daily,
root-mean-square difference (RMSD) between
simulated and observed (reanalysis) 500-hPa
heights generally is within observational noise
levels (about 20 m).

Because simulations from the downscaling
models may be analyzed for periods as short as
a month, model spinup is important (e.g., Giorgi
and Bi 2000). During spinup, the model evolves
to conditions representative of its own clima-
tology, which may differ from the sources of ini-
tial conditions. The atmosphere spins up in a
matter of days, so the key factor is spinup of soil
moisture and temperature, which evolve more

slowly. Equally important, data for initial con-
ditions often are lacking or have low spatial res-
olution, so initial conditions may be only a poor
approximation of the model’s climatology.
Spinup is especially relevant for downscaling
because these models presumably are resolving
finer surface features than coarser models, with
the expectation that the downscaling models are
providing added value through proper represen-
tation of these surface features. Deep-soil tem-
perature and moisture, at depths of 1 to 2
meters, may require several years of spinup.
However, these deep layers generally interact
weakly with the rest of the model, so shorter
spinup times are used. For multiyear simula-
tions, a period of 3 to 4 years appears to be the
minimal requirement (Christensen 1999; Roads
et al. 1999). This ensures that the upper meter of
soil has a climatology in further simulations that
is consistent with the evolving atmosphere.

Many downscaling simulations, especially with
RCMs, are for periods much shorter than 2
years. Such simulations probably will not use
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Figure 3.1. Daily Root-Mean-Square Differences (RMSD) in 500-hPa Heights Between Observations
(Reanalysis) and Seven Models Participating in the PIRCS 1a Experiment, for May 15 to July 15, 1988.
RMSD values were averaged over the simulation domain inside the boundary-forcing zone. [Adapted from Fig. 4 in E.S. Takle et al. 1999:
Project to Intercompare Regional Climate Simulations (PIRCS): Description and initial results. J. Geophysical Research, 104, 19443–
19461. Used with permission of the American Geophysical Union.]  



34

The U.S. Climate Change Science Program Chapter 3 - Added Value of Regional Climate Model Simulations

multiyear spinup. Rather, these studies may
focus on more rapidly evolving atmospheric be-
havior governed by LBCs, including extreme
periods such as drought (Takle et al. 1999) or
flood (Giorgi et al. 1996; Liang, Kunkel, and
Samel 2001; Anderson, C. J., et al. 2003). Thus,
they assume that interaction with the surface,
while not negligible, is not strong enough to
skew the atmospheric behavior studied. Alter-
natively, relatively short regional simulations
may specify, for sensitivity study, substantial
changes in surface evaporation (e.g., Paegle,
Mo, and Nogués-Paegle 1996), soil moisture
(e.g., Xue et al. 2001), or horizontal moisture
flux at lateral boundaries (e.g., Qian, Tao, and
Lau 2004).

3.1.1 Parameterization Issues

Even with higher resolution than standard
GCMs, models simulating regional climate still
need parameterizations for subgrid-scale
processes, most notably boundary-layer dy-
namics, surface-atmosphere coupling, radiative
transfer, and cloud microphysics. Most regional
simulations also require a convection parame-
terization, although a few have used sufficiently
fine grid spacing (a few kilometers) to allow ac-
ceptable simulation without it (e.g., Grell et al.
2000). Often, these parameterizations are the
same or nearly the same as those used in GCMs.
All parameterizations, however, make assump-
tions that they are representing the statistics of
subgrid processes. Implicitly or explicitly, they
require that the grid box area in the real world
has sufficient samples to justify stochastic mod-
eling. For some parameterizations such as con-
vection, this assumption becomes doubtful
when grid boxes are only a few kilometers in
size (Emanuel 1994).

In addition, models simulating regional climate
may include circulation characteristics, such as
rapid mesoscale circulations (jets) whose inter-
action with subgrid processes like convection
and cloud cover differs from larger-scale circu-
lations resolved by typical GCMs. This factor is
part of a larger issue, that parameterizations
may have regime dependence, performing bet-
ter for some conditions than for others. For ex-
ample, the Grell (1993) convection scheme is
responsive to large-scale tropospheric forcing,

whereas the Kain and Fritsch (1993) scheme is
heavily influenced by boundary-layer forcing.
As a result, the Grell scheme better simulates
the propagation of precipitation over the U.S.
Great Plains that is controlled by large-scale tro-
pospheric forcing, while the Kain–Fritsch
scheme better simulates late-afternoon convec-
tion peaks in the southeastern United States that
are governed by boundary-layer processes
(Liang et al. 2004). As a consequence, parame-
terizations for regional simulation may differ
from their GCM counterparts, especially for
convection and cloud microphysics. As noted
earlier, regional simulation in some cases may
have resolution of only a few kilometers, and
the convection parameterization may be dis-
carded (Grell et al. 2000). A variety of parame-
terizations exist for each subgrid process, with
multiple choices often available in a single
model (e.g., Grell, Dudhia, and Stanfler 1994;
Skamarock et al. 2005).

3.1.2 Regional Simulation vs
Computational Costs

The chief reason for performing regional simu-
lation, whether by an RCM, a stretched-grid
model, or a time-slice AGCM, is to resolve be-
havior considered important for a region’s cli-
mate that a global model does not resolve. Thus,
regional simulation should have clearly defined
regional-scale (mesoscale) phenomena targeted
for simulation. These include tropical storms
(e.g., Oouchi et al. 2006), effects of mountains
(e.g., Leung and Wigmosta 1999; Grell et al.
2000; Zhu and Liang 2007), jet circulations
(e.g., Takle et al. 1999; Anderson et al. 2001;
Anderson, C. J., et al. 2003; Byerle and Paegle
2003; Pan et al. 2004), and regional ocean-land
interaction (e.g., Kim et al. 2005; Diffenbaugh,
Snyder, and Sloan 2004). The most immediate
value of regional simulation, then, is to explore
how such phenomena operate in the climate sys-
tem, an understanding of which becomes a jus-
tification for the expense of performing regional
simulation. Phenomena and computational
costs together influence the design of regional
simulations. Simulation periods and resolution
are balanced between sufficient length and
number of simulations for climate statistics vs
computational cost. For RCMs and stretched-
grid models, the sizes of regions targeted for
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high-resolution simulation are determined in
part by where the phenomenon occurs.

In the context of downscaling, regional simula-
tion offers the potential to include phenomena
affecting regional climate change that are not
explicitly resolved in the global simulation.
When incorporating boundary conditions cor-
responding to future climate, regional simula-
tion can then indicate how these phenomena
contribute to climate change. Results, of course,
are dependent on the quality of the boundary-
condition source (Pan et al. 2001; de Elía,
Laprise, and Denis 2002), although use of mul-
tiple sources of future climate may lessen this
vulnerability and offer opportunity for proba-
bilistic estimates of regional climate change
(Raisanen and Palmer 2001; Giorgi and Mearns
2003; Tebaldi et al. 2005). Results also depend
on the physical parameterizations used in the
simulation (Yang and Arritt 2002; Vidale et al.
2003; Déqué et al. 2005; Liang et al. 2006).

Advances in computing power suggest that typ-
ical GCMs eventually will operate at resolutions
of most current regional simulations (a few tens
of kilometers), so understanding and modeling
improvements gained for regional simulation
can promote appropriate adaptation of GCMs to
higher resolution. For example, interaction be-
tween mesoscale jets and convection appears to
require parameterized representation of con-
vective downdrafts and their influence on the
jets (Anderson, Arritt, and Kain 2007), parame-
terized behavior not required for resolutions that
do not resolve mesoscale circulations.

Because of the variety of numerical techniques
and parameterizations employed in regional
simulation, many models and versions of mod-
els exist. Generally in side-by-side comparisons
(e.g., Takle et al. 1999; Anderson, C. J., et al.
2003; Fu et al. 2005; Frei et al. 2006; Rinke et
al. 2006), no single model appears best vs ob-
servations, with different models showing su-
perior performance depending on the field
examined. Indeed, the best results for down-
scaling climate simulations and estimating cli-
mate-change uncertainty may come from
assessing an ensemble of simulations (Giorgi
and Bi 2000; Yang and Arritt 2002; Vidale et al.
2003; Déqué et al. 2005). Such an ensemble

may capture much of the uncertainty in climate
simulation, offering an opportunity for physi-
cally based analysis of climate changes and also
the uncertainty of the changes. Several regional
models have performed simulations of climate
change for parts of North America, but at pres-
ent no regional projections have used an en-
semble of regional models to simulate the same
time periods with the same boundary condi-
tions. Such systematic evaluation has occurred
in Europe in the PRUDENCE (Christensen,
Carter, and Giorgi 2002) and ENSEMBLES
(Hewitt and Griggs 2004) projects and is start-
ing in North America with the North American
Regional Climate Change Assessment Program
(NARCCAP 2007).

3.2 EMPIRICAL DOWNSCALING

Empirical or statistical downscaling is an alter-
native approach to obtaining regional-scale cli-
mate information (Kattenberg et al. 1996;
Hewitson and Crane 1996; Giorgi et al. 2001;
Wilby et al. 2004, and references therein). It
uses statistical relationships to link resolved be-
havior in GCMs with climate in a targeted area.
The targeted area’s size can be as small as a sin-
gle point. As long as significant statistical rela-
tionships occur, empirical downscaling can
yield regional information for any desired vari-
able such as precipitation and temperature, as
well as variables not typically simulated in cli-
mate models, such as zooplankton populations
(Heyen, Fock, and Greve 1998) and initiation of
flowering (Maak and von Storch 1997). This ap-
proach encompasses a range of statistical tech-
niques from simple linear regression (e.g.,
Wilby et al. 2000) to more-complex applica-
tions such as those based on weather generators
(Wilks and Wilby 1999), canonical correlation
analysis (e.g., von Storch, Zorita, and Cubasch
1993), or artificial neural networks (e.g., Crane
and Hewitson 1998). Empirical downscaling
can be very inexpensive compared to numerical
simulation when applied to just a few locations
or when simple techniques are used. Lower
costs, together with flexibility in targeted vari-
ables, have led to a wide variety of applications
for assessing impacts of climate change.

Some methods have been compared side by side
(Wilby and Wigley 1997; Wilby et al. 1998;
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Zorita and von Storch 1999; Widman, Brether-
ton, and Salathe 2003). These studies have
tended to show fairly good performance of rel-
atively simple vs more-complex techniques and
to highlight the importance of including mois-
ture and circulation variables when assessing
climate change. Statistical downscaling and re-
gional climate simulation also have been com-
pared (Kidson and Thompson 1998; Mearns et
al. 1999; Wilby et al. 2000; Hellstrom et al.
2001; Wood et al. 2004; Haylock et al. 2006),
with no approach distinctly better or worse than
any other. Statistical methods, though compu-
tationally efficient, are highly dependent on the
accuracy of regional temperature, humidity, and
circulation patterns produced by their parent
global models. In contrast, regional climate sim-
ulation, though computationally more demand-
ing, can improve the physical realism of
simulated regional climate through higher reso-
lution and better representation of important re-
gional processes. The strengths and weaknesses
of statistical downscaling and regional model-
ing thus are complementary.

3.3 STRENGTHS AND
LIMITATIONS OF REGIONAL
MODELS

We focus here on numerical models simulating
regional climate but do not discuss empirical
downscaling because the wide range of appli-
cations using the latter makes difficult a general
assessment of strengths and limitations.

The higher resolution in regional-scale simula-
tions provides quantitative value to climate sim-
ulation. With finer resolution, scientists can
resolve mesoscale phenomena contributing to
intense precipitation, such as stronger upward
motions (Jones, Murphy, and Noguer 1995) and
coupling between regional circulations and con-
vection (e.g., Anderson, Arritt, and Kain 2007).
Time-slice AGCMs show intensified storm
tracks relative to their parent model (Solman,
Nunez, and Rowntree 2003; Roeckner et al.
2006). Thus, although regional models may still
miss the most extreme precipitation (Gutowski
et al. 2003, 2007a), they can give more intense
events that will be smoothed in coarser-resolu-
tion GCMs. The higher resolution also includes
other types of scale-dependent variability, espe-

cially short-term variability such as extreme
winds and locally extreme temperature that
coarser-resolution models will smooth and thus
inhibit.

Mean fields also appear to be simulated some-
what better on average than are those in coarser
GCMs because spatial variations potentially are
better resolved. Thus, Giorgi et al. (2001) report
typical errors in RCMs of less than 2˚C temper-
ature and 50% for precipitation in regions 105 to
106 km2. Large-scale circulation fields tend to
be well simulated, at least in the extratropics.

As alluded to above, regional-scale simulations
also have phenomenological value, simulating
processes that GCMs either cannot resolve or
can resolve only poorly. These include internal
circulation features such as the nocturnal jet that
imports substantial moisture to the center of the
United States and couples with convection (e.g.,
Byerle and Paegle 2003; Anderson, Arritt, and
Kain 2007). These processes often have sub-
stantial diurnal variation and thus are important
to proper simulation of regional diurnal cycles
of energy fluxes and precipitation. Some
processes require the resolution of surface fea-
tures too coarse for typical GCM resolution.
These include rapid topographic variation and
its influence on precipitation (e.g., Leung and
Wigmosta 1999; Hay et al. 2006) and the cli-
matic influences of bodies of water such as the
Gulf of California (e.g., Anderson et al. 2001)
and the North American Great Lakes (Lofgren
2004) and their downstream influences. In ad-
dition, regional simulations resolve land-surface
features that may be important for climate-
change impact assessments such as distributions
of crops and other vegetation (Mearns 2003;
Mearns et al. 2003), although care is needed to
obtain useful information at higher resolution
(Adams, McCarl, and Mearns 2003).

An important limitation for regional simulations
is that they are dependent on boundary condi-
tions supplied from some other source. This ap-
plies to all three forms of numerical simulation
(RCMs, stretched-grid models, and time-slice
AGCMs), since they all typically require input
of sea-surface temperature and ocean ice. Some
RCM simulations have been coupled to a re-
gional ocean-ice model, with mixed-layer ocean
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(Lynch et al. 1995; Lynch, Maslanic, and Wu
2001) and a regional ocean-circulation model
(Rummukainen et al. 2004), but this is not com-
mon. In addition, of course, RCMs require
LBCs. Thus, regional simulations by these mod-
els are dependent on the model quality or on ob-
servations supplying boundary conditions. This
is especially true for projections of future cli-
mate, suggesting value in performing an en-
semble of simulations using multiple
atmosphere-ocean global models to supply
boundary conditions, thus including some of the
uncertainty involved in constructing climate
models and projecting future changes in bound-
ary conditions.

Careful evaluation also is necessary to show dif-
ferences, if any, between the regional simula-
tion’s large-scale circulation and its driving
dataset. Generally, any tendency for the regional
simulation to alter biases in the parent GCM’s
large-scale circulation should be viewed with
caution (Jones, Murphy, and Noguer 1995). An
RCM normally should not be expected to cor-
rect large-scale circulation problems of the par-
ent model unless the physical basis for the
improvement is clearly understood. Clear phys-
ical reasons for the correction due to higher res-
olution, such as better rendition of physical
processes like topographic circulation (e.g.,
Leung and Qian 2003), surface-atmosphere in-
teraction (Han and Roads 2004), and convec-
tion (Liang et al. 2006) must be established.
Otherwise, the regional simulation may simply
have errors that counteract the parent GCM’s er-
rors, thus undermining confidence in projected
future climate.

RCMs also may exhibit difficulty in outflow re-
gions of domains, especially regions with rela-
tively strong cross-boundary flow, which may
occur in extratropical domains covering a sin-
gle continent or less. The difficulty appears to
arise because storm systems may track across
the RCM’s domain at a different speed from
their movement in the driving-data source, re-
sulting in a mismatch of circulations at bound-
aries where storms would be moving out of the
domain. Also, unresolved scales of behavior are
always present, so regional simulations are still
dependent on parameterization quality for the
scales explicitly resolved. Finally, higher com-
putational demand due to shorter time steps lim-
its the length of typical simulations to 2 to 3
decades or less (e.g., Christensen, Carter, and
Giorgi 2002; NARCCAP 2007), with few en-
semble simulations to date.
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The response of climate to a perturbation such as a change in carbon dioxide concentration, or

in the flux of energy from the sun, can be divided into two factors: “radiative forcing” due to the

perturbation in question and “climate sensitivity,” characterizing the response of the climate per

unit change in radiative forcing. Climate response is then the product of radiative forcing and cli-

mate sensitivity. This distinction is useful because of two approximations: radiative forcing often

can be thought of as independent of the resulting climate response, and climate sensitivity can

often be thought of as independent of the agent responsible for perturbation to the energy bal-

ance. When two or more perturbations are present simultaneously, their cumulative effect can be

approximated by adding their respective radiative forcings (Hansen et al. 2006).

Climate sensitivity as traditionally defined
refers to the global mean temperature, but a
model’s global mean temperature response is
very relevant to its regional temperature re-
sponses as well. This “pattern scaling” effect is
discussed at the end of this chapter.

Radiative forcing typically is calculated by
changing the atmospheric composition or ex-
ternal forcing and computing the net trapping
of heat that occurs before the climate system has
had time to adjust.1 These direct heat-trapping
properties are well characterized for the most
significant greenhouse gases. As a result, un-
certainty in climate responses to greenhouse
gases typically is dominated by uncertainties in
climate sensitivity rather than in radiative forc-
ing (Ramaswamy et al. 2001). For example,
suddenly doubling the atmospheric amount of

carbon dioxide would add energy to the surface
and the troposphere at the rate of about 4 W/m2

for the first few months after the doubling
(Forster et al. 2007). Eventually, lower tropos-
pheric temperatures would increase (and cli-
mate would change in other ways) in response
to this forcing, Earth would radiate more energy
to space, and the imbalance would diminish as
the system returned to equilibrium.

4.1 CHARACTERIZING CLIMATE
RESPONSE

4.1.1 Equilibrium Sensitivity and
Transient Climate Response

The idea of characterizing climate response
using a single number represented by climate
sensitivity appeared early in the development of

1 Because the stratosphere cools rapidly in response to increasing carbon dioxide and this cooling affects the net
warming of the lower atmosphere and surface, it has become standard to include the effects of this stratospheric cool-
ing in estimating radiative forcing due to carbon dioxide.



climate models (e.g., Schneider and Mass
1975). Today, two different numbers are in com-
mon use. Both are based on changes in global
and annual mean-surface or near-surface tem-
perature. Equilibrium sensitivity is defined as
the long-term near-surface temperature increase
after atmospheric carbon dioxide has been dou-
bled from preindustrial levels but thereafter held
constant until the Earth reaches a new steady
state, as described in the preceding paragraph.
Transient climate response or TCR is defined
by assuming that carbon dioxide increases by
1% per year and then recording the temperature
increase at the time carbon dioxide doubles
(about 70 years after the increase begins). TCR
depends on how quickly the climate adjusts to
forcing, as well as on equilibrium sensitivity.
The climate’s adjustment time itself depends on
equilibrium sensitivity and on the rate and depth
to which heat is mixed into the ocean, because
the depth of heat penetration tends to be greater
in models with greater sensitivity (Hansen et al.
1985; Wigley and Schlesinger 1985). Account-
ing for ocean heat uptake complicates many at-
tempts at estimating sensitivity from observations,
as outlined below.

Equilibrium sensitivity depends on the strengths
of feedback processes involving water vapor,
clouds, and snow or ice extents (see, e.g.,
Hansen et al. 1984; Roe and Baker 2007). Small
changes in the strengths of feedback processes
can create large changes in sensitivity, making it
difficult to tightly constrain climate sensitivity
by restricting the strength of each relevant feed-
back process. As a result, research aimed at con-
straining climate sensitivity—and evaluating the
sensitivities generated by models—is not lim-
ited to studies of these individual feedback
processes. Studies of observed climate re-
sponses on short time scales (e.g., the response
to volcanic eruptions or the 11-year solar cycle)
and on long time scales (e.g., the climate of last
glacial maximum 20,000 years ago) also play
central roles in the continuing effort to constrain
sensitivity. The quantitative value of each of
these observational constraints is limited by the
quality and length of relevant observational
records, as well as the necessity in several cases
to simultaneously restrict ocean heat uptake and
equilibrium sensitivity. Equilibrium warming is
directly relevant when considering paleocli-

mates, where observations represent periods
that are very long compared to the climate’s ad-
justment time. The transient climate response is
more directly relevant to the attribution of re-
cent warming and projections for the next cen-
tury. For example, Stott et al. (2006) show that
global mean warming due to well-mixed green-
house gases over the 20th Century, in the set of
models they consider, is closely proportional to
the model’s TCR. In the following, we discuss in-
dividual feedback processes as well as these ad-
ditional observational constraints on sensitivity.

Equilibrium warming in an AOGCM is difficult
to obtain because the deep ocean takes a great
deal of time to respond to changes in climate
forcing. To avoid unacceptably lengthy com-
puter simulations, equilibrium warming usually
is estimated from a modified climate model in
which the ocean component is replaced by a
simplified, fast-responding “slab ocean model.”
This procedure makes the assumption that hor-
izontal redistribution of heat in the ocean does
not change as the climate responds to the per-
turbation. Current climate models generate a
range of equilibrium and transient climate sen-
sitivities. For the models in the CMIP3 archive
utilized in the Fourth Assessment of the IPCC,
the range of equilibrium sensitivity is 2.1 to
4.4°C with a median of 3.2°C. This ensemble of
models was not constructed to systematically
span the plausible range of uncertainty in cli-
mate sensitivity; rather, each development team
simply provided its best attempt at climate sim-
ulation. Complementary to this approach is one
in which a single climate model is modified in
a host of ways to explore more systematically
the sensitivity variations associated with the
range of uncertainty in various key parameters.
Results with a Hadley Centre model give a 5 to
95 percentile range of ~2 to 6°C for equilibrium
sensitivity (Piani et al. 2005; Knutti et al. 2006).

Charney (1979) provided a range of equilibrium
sensitivities to CO2 doubling of 1.5 to 4.5°C,
based on the two model simulations available at
the time. Evidently, the range of model-implied
climate sensitivity has not contracted signifi-
cantly over three decades. The current range,
however, is based on a much larger number of
models subjected to a far more comprehensive
comparison to observations and containing
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more detailed treatments of clouds and other
processes that are fundamental to climate sen-
sitivity. We understand in much more detail why
models differ in their equilibrium climate sen-
sitivities: the source of much of this spread lies
in differences in how clouds are modeled in
AOGCMs. Questions remain as to whether or
not the substantial spread among models is a
good indication of the uncertainty in climate
sensitivity, given all the constraints on this
quantity of which we are aware. There also is a
desire to know the prospects for constraining
equilibrium climate sensitivity more sharply in
the near future.

The variation among models is less for TCR
than for equilibrium warming, a consequence of
the interrelationship between the climate’s ad-
justment time and its sensitivity to forcing noted
above (Covey et al. 2003). The full range for
TCR in the CMIP3 archive is 1.3 to 2.6°C, with
a median of 1.6°C and 25 to 75% quartiles of
1.5 to 2.0°C (Randall et al. 2007). Systematic
exploration of model input parameters in one
Hadley Centre model gives a range of 1.5 to
2.6°C (Collins, M., et al. 2006).

The equilibrium and transient sensitivities in
some models developed by U.S. centers con-
tributing to CMIP3 are listed in Table 4.1. In the
last column, the larger of the two GISS ModelE
values is obtained using a full ocean model in
which the circulation is allowed to adjust. All
other values of equilibrium warming in the table
are obtained with the ocean component replaced
by a slab ocean model. The close agreement in
transient climate sensitivity among models in
this subset should not be overinterpreted, given
the larger range among the full set of CMIP3
models.

Climate sensitivity is not a model input. It
emerges from explicitly resolved physics, sub-
grid-scale parameterizations, and numerical ap-
proximations used by the models—many of
which differ from model to model—particularly
those related to clouds and ocean mixing. The
climate sensitivity of a model can be changed
by modifying parameters that are poorly con-
strained by observations or theory. Influential
early papers by Senior and Mitchell (1993,
1996) demonstrated how a seemingly minor

modification to the cloud-prediction scheme al-
ters climate sensitivity. In the standard version
of the model, the effective size of cloud drops
was fixed. In two other versions, this cloud-drop
size was tied to the total amount of liquid-water
cloud through two different empirical relation-
ships. The equilibrium sensitivity ranged from
1.9 to 5.5°C in these three models. In general,
the nonlinear dependence of equilibrium sensi-
tivity on the strength of feedback processes al-
lows relatively small changes in feedbacks to
generate large changes in sensitivity (see, e.g.,
Hansen et al. 1984; Roe and Baker 2007).

Studies of the CCSM family of models provide
another example of this problem. Kiehl et al.
(2006) found that a variety of factors is respon-
sible for differences in climate sensitivity
among the models of this family. However, the
lower TCR of CCSM2 (relative to CSM1.4 and
CCSM3), evident in Table 4.1, results primarily
from a single change in the model’s algorithm
for simulating convective clouds. Table 4.2
shows how equilibrium sensitivity varied dur-
ing development of the most recent GFDL mod-
els. The dramatic drop in sensitivity between
model versions p10 and p12.5.1 was unex-

MODEL TCR Equilibrium
Warming*

CSM1.4 1.4ºC 2.0ºC

CCSM2 1.1ºC 2.3ºC

CCSM3 1.5ºC 2.5ºC

GFDL CM2.0 1.6ºC 2.9ºC

GFDL CM2.1 1.5ºC 3.4ºC

GISS Model E 2.7 to 2.9ºC

*Equilibrium warming was assessed by joining a
simplified slab ocean model to the atmosphere,
land, and sea-ice AOGCM components. 

[Sources of Information in table. First three
lines – J.T. Kiehl et al. 2006: The climate
sensitivity of the Community Climate System
Model: CCSM3. J. Climate, 19, 2584–2596. Next
two lines – R.J. Stouffer et al. 2006: GFDL’s CM2
global coupled climate models. Part IV: Idealized
climate response. J. Climate, 19, 723–740. Last
line – J. Hansen et al. 2007: Climate simulations
for 1880–2003 with GISS ModelE. Climate
Dynamics, 29(7–8), 661–696.]

Table 4.1
Equilibrium and
Transient
Sensitivities in
Some U.S. Models
Contributing to
CMIP3
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pected. It followed a reformulation of the
model’s treatment of processes in the lower at-
mospheric boundary layer, which, in turn, af-
fected how low-level clouds in the model
respond to climate change.

4.1.2 Observational Constraints on
Sensitivity

Climate models in isolation have not yet con-
verged on a robust value of climate sensitivity.
Furthermore, the actual climate sensitivity in
nature might not be found in the models’ range
of sensitivities, since all the models may share
common deficiencies. However, observations
can be combined with models to constrain cli-
mate sensitivity. The observational constraints
include the response to volcanic eruptions; as-
pects of the internal variability of climate that
provide information on the strength of climatic
“restoring forces”; the response to the 11-year
cycle in solar irradiance; paleoclimatic infor-

mation, particularly from the peak of the last Ice
Age some 20,000 years ago; aspects of the sea-
sonal cycle; and, needless to say, the magnitude
of observed warming over the past century.

4.1.2.1 VOLCANIC ERUPTIONS

Volcanoes provide a rapid change in radiative
forcing due to the scattering and absorption of
solar radiation by stratospheric volcanic aerosol.
Of special importance, recovery time after the
eruption contains information about climate
sensitivity that is independent of uncertainties
in the magnitude of the radiative forcing per-
turbation (e.g., Lindzen and Giannitsis 1998).
Larger climate sensitivity implies weaker restor-
ing forces on Earth’s temperature, and, there-
fore, a slower relaxation back toward the
unperturbed climate. However, this time scale
also is affected by the pathways through which
heat anomalies propagate into the ocean depths,
with deeper penetration increasing the relax-
ation time. Several modeling studies have con-
firmed that this relaxation time after an eruption
increases as climate sensitivity increases in
GCMs when holding the ocean model fixed
(Soden et al. 2002; Yokohata et al. 2005), en-
couraging the use of volcanic responses to con-
strain sensitivity. On the other hand, Boer,
Stowasser, and Hamilton (2007) study two mod-
els with differing climate sensitivity and differ-
ent ocean models; they highlight the difficulty
in determining which model has the higher sen-
sitivity from the surface-temperature responses
to volcanic forcing in isolation, without quanti-
tative information on ocean heat uptake.

Some studies have argued that observations of
responses to volcanoes imply that models are
overestimating climate sensitivity (e.g., Dou-
glass and Knox 2005; Lindzen and Giannitsis
1998). These studies argue that observed relax-
ation times are shorter than those expected if
climate sensitivity is as large as in typical
AOGCMs. Studies that directly examine the
volcanic responses in AOGCMs, however, find
no such gross disagreement with observations
(Wigley et al. 2005; Boer, Stowasser, and
Hamilton 2007; Frame et al. 2005) consistent
with earlier studies (e.g., Hansen et al. 1996;
Santer et al. 2001). They nevertheless consis-
tently suggest (Frame et al. 2005; Yokohata et
al. 2005) that climate sensitivities as large as

MODEL VERSION Equilibrium
Warming(ºC)*

p7 3.87

p9 4.28

p10 4.58

p12.5.1 2.56

p12.7 2.65

p12.10b 2.87

p12b 2.83

CM 2.0 2.90

CM 2.1 3.43

*Equilibrium warming was assessed by joining a
simplified slab ocean model to the atmosphere,
land, and sea-ice AOGCM components. 

[Source of information for table: Personal
communication with Thomas Knutson, NOAA
GFDL laboratory.]

Table 4.2
Equilibrium Global
Mean Near-Surface
Warming Due to
Doubled
Atmospheric
Carbon Dioxide
from Intermediate
(“p”) Model
Versions Leading to
GFDL’s CM2.0 and
CM2.1
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6ºC are inconsistent with observed relaxation
times. It is important to note that these “obser-
vational” studies of climate sensitivity that do
not utilize GCMs still make use of models, but
they use simple energy balance “box” models
rather than GCMs. The value of these studies
depends on the relevance of the simple models
as well as on the techniques for estimating pa-
rameters in models that control climate sensi-
tivity. From these analyses, one can infer that
further research isolating changes in ocean heat
content after eruptions, such as that of Church,
White, and Arblaster (2005), will be needed to
strengthen constraints on climate sensitivity
provided by responses to volcanic eruptions.

4.1.2.2 NATURAL CLIMATE VARIABILITY

Natural variability of climate also provides a
way of estimating the strength of the restoring
forces that determine climate sensitivity. Just as
investigators learn something about sensitivity
by watching the climate recover from a volcanic
eruption, they can hope to obtain similar infor-
mation by watching the climate relax from an
unforced period of unusual global warmth or
cold. This approach to constraining the response
to a perturbation by examining the character of
a system’s natural variability, discussed by Leith
(1975) in the context of climate sensitivity, is
referred to as “fluctuation-dissipation” analysis
in other branches of physics. In the case of equi-
librium statistical mechanics, this relationship
between characteristics of natural variability
and response to an external force has been
placed on a firm theoretical footing, but appli-
cation to the climate is more heuristic, gener-
ally depending on approximation of the climate
system by a linear stochastically forced model.
The power of the approach is illustrated by Grit-
sun and Branstator (2007) in a study of the ex-
tratropical atmosphere’s response to a
perturbation in tropical heating. A recent attempt
to apply this approach to climate sensitivity can
be found in Schwartz (2007). This technique de-
serves more attention, with careful analysis of
uncertainties. Its value likely will be determined
by its ability to infer an AOGCM’s sensitivity
from an analysis of its internal variability.

4.1.2.3 SOLAR VARIATIONS

The 11-year solar cycle has potential for pro-
viding very useful information on climate sen-

sitivity. Total solar irradiance is known to vary
by roughly 0.1% over this cycle (Frölich 2002).
The expected response in global mean temper-
ature is only ~0.1ºC, so the technique is limited
in value by the quality and length of the obser-
vational record, both of which restrict our abil-
ity to isolate this small signal. Recent results
show promise in more cleanly identifying the
climatic response to this cyclic perturbation
(Camp and Tung 2007). Since ultraviolet wave-
lengths play a disproportionately larger role in
these cyclic variations, detailed representations
of the stratosphere and mesosphere, where ul-
traviolet radiation is absorbed, along with ozone
chemistry are required for quantitative analysis
of climatic response to the solar cycle (e.g.,
Shindell et al. 2006). Solar variations also have
been invoked repeatedly to explain early 20th

Century warming and to connect the Little Ice
Age to the Maunder Minimum in sunspot num-
ber. While these connections may very well
have a valid basis, using them to constrain cli-
mate sensitivity remains difficult as long as
variations in insolation on time scales longer
than the 11-yr cycle are not better quantified.
To illustrate the difficulty, we note the substan-
tial reduction in estimated insolation variations
in the 20th Century between the Third and
Fourth IPCC Assessments (Forster et al. 2007).
Further analyses of responses to the sunspot
cycle in models and observations seem likelier
to lead to stronger constraints on climate sensi-
tivity in the near term.

4.1.2.4 GLACIAL-INTERGLACIAL VARIATIONS

The glacial-interglacial fluctuations of the Pleis-
tocene (the Ice Ages) are thought to be forced
by changes in the Earth’s orbit on time scales of
20,000 years and longer—the astronomical the-
ory of the Ice Ages. Since this theory assumes
that the mean temperature of the Earth can be
altered by changing the distribution of the in-
coming solar flux without changing its global
mean, it suggests important limitations to sim-
ple models based solely on global mean radia-
tive forcing. For the limited purpose of
constraining climate sensitivity, we need not un-
derstand how glacial-interglacial variations of
ice sheets and of carbon dioxide are forced by
changes in the Earth’s orbit. Since we have
knowledge from ice cores of greenhouse gas
concentrations at the peak of the last major gla-
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cial advance 20,000 years ago as well as con-
siderable information on the extent of conti-
nental ice sheets, one may ask if climate models
can simulate the ocean-surface temperatures in-
ferred from a variety of proxies, given these
greenhouse gas concentrations and ice sheets
(Manabe and Broccoli 1985). A logical as-
sumption is that models that are more sensitive
to doubling of carbon dioxide would also simu-
late larger cooling during the low carbon diox-
ide levels 20,000 years ago. Crucifix (2006)
describes some of the difficulties with this sim-
ple picture. Annan and Hargreaves (2006) argue
that the tropics and Antarctica are regions where
this connection may be the strongest. Model re-
sults generated in the Paleoclimate Modelling
Intercomparison Project (Braconnet et al.
2007a, b; Crucifix et al. 2006)) provide a valu-
able resource for analyzing these relationships.
Despite these complications, several studies
agree that past climates are difficult to recon-
cile with the low end of the equilibrium-sensi-
tivity range generated by models (e.g., Hansen
et al. 1993; Covey, Sloan, and Hoffert 1996).
Models of the last glacial maximum also pro-
vide some of the strongest evidence that climate
sensitivity is very unlikely to be larger than 6°C
(Annan et al. 2005; Annan and Hargreaves
2006). As paleoclimatic reconstructions for this
period improve, these simulations will become
of greater quantitative value. Uncertainty in Ice
Age aerosol concentrations may be the most dif-
ficult obstacle to overcome.

4.1.2.5 SEASONAL VARIATION

The seasonal cycle is a familiar forced climate
response to changes in the Earth-sun geometry
and, therefore, should yield information on cli-
mate sensitivity. Although the seasonal cycles
of global (Lindzen 1994) and hemispheric
(Covey et al. 2000) mean temperature are not
themselves strongly related to equilibrium cli-
mate sensitivity, regional variations and other
aspects of the seasonal cycle may constrain sen-
sitivity. Knutti et al. (2006) provide an example
of a methodology using ensembles of climate
model simulations to search for variables, or
combinations of variables, that correlate with
climate sensitivity (see also Shukla et al. 2006).
If such a variable that predicts climate sensitiv-

ity in models is found, investigators can then ex-
amine its value in observations and hope
thereby to constrain climate sensitivity. Knutti
et al. (2006) use a neural network to look for as-
pects of the seasonal cycle with this predictive
capability, with some success. Their study fa-
vors sensitivity in the middle of the typical
model range (near 3˚C).

The work of Qu and Hall (2006) provides an es-
pecially straightforward example of this ap-
proach. They do not address climate sensitivity
directly but only the strength of one feedback
mechanism that contributes to sensitivity: snow-
albedo feedback (the decrease in reflection of
solar radiation by snow as the snowcover re-
treats in a warming climate). Qu and Hall
demonstrate that the strength of this feedback
in models is strongly correlated to the seasonal
cycle of the snow cover simulated by the mod-
els. Comparison of observed and simulated sea-
sonal cycles of snow cover then suggest which
model simulations of snow albedo feedback are
the most reliable. These studies suggest that de-
tailed comparisons of modeled and observed
seasonal cycles should provide valuable infor-
mation on climate sensitivity in the future.

The observed 20th Century warming is a funda-
mental constraint on climate models, but it is
less useful than one might think in constraining
sensitivity because of the large uncertainty in
forcing due to anthropogenic aerosols. Twenti-
eth Century simulations are important in
demonstrating the consistency of certain com-
binations of sensitivity, aerosol forcing, and
ocean-heat uptake, but they do not provide a
sharp constraint on sensitivity in isolation
(Kiehl 2007). Further discussion of 20th Century
simulations can be found in Chapter 5.

Rather than focusing on one particular observa-
tional constraint or on models in isolation, at-
tempts to combine some or all of these
observational constraints with model simula-
tions are recognized as the most productive ap-
proaches to constraining climate sensitivity
(Bierbaum et al. 2003; Randall et al. 2007; Stott
and Forest 2007). As an example, while model
ensembles in which parameters are varied sys-

2 Estimating the probability of very high climate sensitivities above the high end of the CMIP3 model range, even if
these probabilities are low, can be relevant for analyses of unlikely but potentially catastrophic climate change. It is
not within the scope of this report to attempt to quantify these probabilities.
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tematically can include models with sensitivi-
ties larger than 6ºC (Stainforth et al. 2005; Roe
and Baker 2007), these very high values can be
excluded with high confidence through compar-
isons with observations of volcanic relaxation
times and simulations of the last glacial maxi-
mum. As summarized by Randall et al. (2007) in
the Fourth IPCC Assessment, these multicon-
straint studies are broadly consistent with the
spread of sensitivity in the CMIP3 models.2

4.2 FEEDBACKS

Better understanding of Earth’s climate sensi-
tivity, with potential reduction in its uncertainty,
will require better understanding of a variety of
climate feedback processes (Bony et al. 2006).
We discuss some of these processes in more de-
tail below.

4.2.1 Cloud Feedbacks

Clouds reflect solar radiation to space, cooling
the Earth-atmosphere system. Clouds also trap
infrared radiation, keeping the Earth warm. The
integrated net effect of clouds on climate de-
pends on their height, location, microphysical
structure, and evolution through the seasonal
and diurnal cycles. Cloud feedback refers to
changes in cloud amounts and properties that
can either amplify or moderate a climate
change. Differences in cloud feedbacks in cli-
mate models have been identified repeatedly as
the leading source of spread in model-derived
estimates of climate sensitivity (beginning with
Cess et al. 1990). The fidelity of cloud feed-
backs in climate models therefore is important
to the reliability of their prediction of future cli-
mate change.

Soden and Held (2006) evaluated cloud feed-
backs in 12 CMIP3 AOGCMs and found
weakly to strongly positive cloud feedback in
the various models. The highest values of cloud
feedback raise the equilibrium climate sensitiv-
ity (for CO2 doubling) from values of about 2 K
to roughly 4 K. In comparison with the earlier
studies of Cess (1990) and Colman (2003), the
spread of cloud feedbacks among GCMs has
become somewhat smaller over the years but is
still very substantial. Indeed, intermodel differ-
ences in cloud feedback are the primary reason

that models disagree in their estimates of equi-
librium climate sensitivity; which (if any) mod-
els give accurate cloud simulations remains
unclear (Randall et al. 2007) as debate over spe-
cific processes continues (Spencer et al. 2007)

Examples of competing hypotheses concerning
high clouds (for which the infrared trapping ef-
fects are large) are the IRIS hypothesis of
Lindzen, Chou, and Hou (2001) and the FAT
(Fixed Anvil Temperature Hypothesis) of Hart-
mann and Larsson (2002). The IRIS hypothesis
asserts that warmer temperatures cause the area
coverage of clouds in the tropical upper tropo-
sphere to decrease, a negative feedback since
these clouds are infrared absorbers. The FAT hy-
pothesis asserts that the altitude of these tropi-
cal high clouds tends to increase with warming,
minimizing the temperature change at the cloud
tops—a positive feedback since the lack of
warming at cloud top prevents the increase in
outgoing radiation needed to balance the heat
trapping of greenhouse gases. Observational
studies aimed at evaluating these mechanisms
are difficult because clouds in the tropics are
strongly forced by circulations that are, in turn,
driven by temperature gradients and not by the
local temperature in isolation. These circulation
effects must be eliminated to isolate effects rel-
evant to global warming. Very high resolution
simulations in localized regions have some po-
tential to address these questions. The FAT hy-
pothesis, in particular, has received some
support from high-resolution modeling (Kuang
and Hartmann 2007).

Although these studies focus on high clouds, the
intermodel differences in model responses of
low-level clouds are responsible for most of the
spread of cloud feedback values in climate mod-
els (Bony et al. 2006). While tempting, assum-
ing that this implies that low-cloud feedbacks
are more uncertain than high-cloud feedbacks
probably is premature. The strengths and weak-
nesses of cloud-cover simulations for present-
day climate are described in Chapter 5.

As discussed in Chapter 6, a new class of much
higher resolution global atmospheric simula-
tions promises fundamental improvements in
cloud simulation. Using the surrogate climate
change framework of Cess (1990) in which
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ocean temperatures are warmed uniformly,
Miura et al. (2005) carried out experiments
using a global model with 7-km resolution, ob-
taining results suggestive of negative cloud
feedback outside the tropics, and Wyant et al.
(2006) describe results from a multigrid tech-
nique in which high-resolution cloud models are
embedded in each grid box of a traditional
GCM. Much work will be required with these
new types of models before they can be given
substantial weight in discussions of the most
probable value for cloud feedback, but they sug-
gest that real-world feedback is less positive
than the typical CMIP3 AGCMs and that mid-
latitude cloud feedbacks may be more impor-
tant than hitherto assumed. Results from this
new generation of models will be of consider-
able interest in the coming years.

Several questions remain to be answered about
cloud feedbacks in GCMs. Physical mecha-
nisms underlying cloud feedbacks in different
models must be better characterized. How best
to judge the importance of model biases in sim-
ulations of current climate and in simulations of
cloud changes in different modes of observed
variability is not clear. In particular, how to
translate these biases into levels of confidence
in simulations of cloud feedback processes in
climate change scenarios is unclear. New satel-
lite products such as those from active radar and
lidar systems should play a central role in cloud
research in coming years by providing more
comprehensive space-time cloud datasets.

4.2.2 Water-Vapor Feedbacks

Analysis of radiative feedbacks in the CMIP3
models (Soden and Held 2006) reaffirms that
water-vapor feedback—the increase in heat
trapping due to the increase in water vapor as
the lower atmosphere warms—is fundamental
to the models’ climate sensitivity. The strength
of their water-vapor feedback typically is close
in magnitude to but slightly weaker than that ob-
tained by assuming that relative humidity re-
mains unchanged as the atmosphere warms.

A trend toward increasing column water vapor
in the atmosphere consistent with model pre-
dictions has been documented from microwave
satellite measurements (Trenberth, Fasullo, and
Smith 2005), and excellent agreement for this

quantity has been found between satellite ob-
servations and climate models constrained by
the observed ocean-surface temperatures
(Soden 2000). These studies increase confi-
dence in the models’ vapor distributions more
generally, but column water vapor is dominated
by changes in the lower troposphere, whereas
water-vapor feedback is strongest in the upper
troposphere where most outgoing terrestrial ra-
diation to space originates. The results of Soden
and Held (2000) imply that at least half the
global water-vapor feedback arises from the
tropical upper troposphere in models in which
relative humidity changes are small. Studies of
vapor trends in this region are therefore of cen-
tral importance. Soden and Held (2006) present
analysis of radiance measurements, implying
that relative humidity has remained unchanged
in the upper tropical troposphere over the past
few years, which, combined with temperature
measurements, provides evidence that water
vapor in this region is increasing.

Observations of interannual variability in water
vapor can help to judge the quality of model
simulations. Soden et al. (2002) concluded that
a GCM appropriately simulates water-vapor
variations in the tropical upper troposphere dur-
ing cooling associated with the Pinatubo vol-
canic eruption. Minschwaner, Essler, and
Sawaengphokhai (2006) compared the interan-
nual variability of humidity measured in the
highest altitudes of the tropical troposphere with
CMIP3 20th Century simulations. Both models
and observations show a small negative corre-
lation between relative humidity and tropical
temperatures, due in large part to lower relative
humidity in warm El Niño years and higher rel-
ative humidity in cold La Niña years. However,
there is a suggestion that the magnitude of this
covariation is underestimated in most models.
There also is a tendency for models with larger
interannual variations in relative humidity to
produce larger reductions in this region in re-
sponse to global warming, suggesting that this
deficiency in interannual variability might be
relevant for climate sensitivity. (This is another
example, analogous to the Qu and Hall (2006)
analysis of snow feedback, in which the strength
of a feedback in models is correlated with a
more readily observed aspect of climatic vari-
ability.) In short, the study of Minschwaner,
Essler, and Sawaengphokhai (2006) suggests
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that water-vapor feedback in the very highest
levels of the tropical troposphere may be over-
estimated in models, but it does not imply that
a significant correction is needed to the overall
magnitude of the feedback.

Positive water-vapor feedback, resulting from
increases in vapor that keep the relative humid-
ity from changing substantially as the climate
warms, has been present in all GCMs since the
first simulations of greenhouse gas–induced
warming (Manabe and Wetherald 1975). It rep-
resents perhaps the single most robust aspect of
global warming simulations. Despite the fact
that the distribution of water vapor in the at-
mosphere is complex, we are aware of no ob-
servational or modeling evidence that casts
doubt of any significance on this basic result,
and we consider the increase in equilibrium sen-
sitivity to roughly 2ºC from this feedback to be
a solid starting point from which the more un-
certain cloud feedbacks then operate.

4.3 TWENTIETH CENTURY
RADIATIVE FORCING

Radiative forcing is defined as a change that af-
fects the Earth’s radiation balance at the top of
the tropopause between absorbed energy re-
ceived in the form of solar energy and emitted
infrared energy to space, typically expressed in
terms of changes to the equilibrium preindus-
trial climate. Uncertainties in 20th Century ra-
diative forcing limit the precision with which
climate sensitivity can be inferred from ob-
served temperature changes. In this section, we
briefly discuss the extent to which models pro-
vide consistent and reliable estimates of radia-
tive forcing over the 20th Century. Further
information is provided by Forster et al. (2007).

Radiative forcing in models can be quantified
in different ways, as outlined by Hansen et al.
(2005). For example, the radiative forcing for
the idealized case of CO2 doubling can be com-
puted by (1) holding all atmospheric and sur-
face temperatures fixed, (2) allowing the
stratospheric temperatures to adjust to the new
CO2 levels, (3) fixing surface temperatures over
both land and ocean and allowing the atmos-
phere to equilibrate, or (4) fixing ocean tem-
peratures only and allowing the atmosphere and
land to equilibrate. Comparing model forcings

in the literature is complex because of differing
calculations in different papers. An important
objective for the climate modeling community
is to improve the consistency of its reporting of
radiative forcing in models.

4.3.1 Greenhouse Gases

Greenhouse gases like carbon dioxide and
methane have atmospheric lifetimes that are
long, compared to the time required for these
gases to be thoroughly mixed throughout the at-
mosphere. Trends in concentration, consistent
throughout the world, have been measured rou-
tinely since the International Geophysical Year
in 1958. Measurements of gas bubbles trapped
in ice cores give the concentration prior to that
date (with less time resolution). Nevertheless,
the associated radiative forcing varies somewhat
among climate models because GCM radiative
calculations must be computationally efficient,
necessitating approximations that make them
less accurate than the best laboratory spectro-
scopic data and radiation algorithms. Using
changes in well-mixed greenhouse gases meas-
ured between 1860 and 2000, Collins et al.
(2006b) compared the radiative forcing of cli-
mate models (including CCSM, GFDL, and
GISS) with line-by-line (LBL) calculations in
which fewer approximations are made. The me-
dian LBL forcing at the top of the model by
greenhouse gases is 2.1 W/m2, and the corre-
sponding median among the climate models is
higher by only 0.1 W/m2. However, the standard
deviation among model estimates is 0.30 W/m2

(compared to 0.13 for the LBL calculations).
Based on these most-recent comparisons with
LBL computations, we can reasonably assume
that radiative forcing due to carbon dioxide dou-
bling in individual climate models may be in
error by roughly 10%.

4.3.2 Other Forcings

While increases in the concentration of green-
house gases provide the largest radiative forc-
ing during the 20th Century, other smaller
forcings must be considered to quantitatively
model the observed change in surface air tem-
perature. The burning of fossil fuels that release
greenhouse gases into the atmosphere also pro-
duces an increase in atmospheric aerosols
(small liquid droplets or solid particles that are
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temporarily suspended in the atmosphere).
Aerosols cool the planet by reflecting sunlight
back to space. In addition, among other forcings
are changes in land use that alter the reflectivity
of the Earth’s surface, as well as variations in
sunlight impinging on the Earth.

4.3.2.1 AEROSOLS

Aerosols have short lifetimes (on the order of a
week) that prevent them from dispersing uni-
formly throughout the atmosphere, in contrast
to well-mixed greenhouse gases. Consequently,
aerosol concentrations have large spatial varia-
tions that depend on the size and location of
sources as well as changing weather that dis-
perses and transports the aerosol particles.
Satellites can provide the global spatial cover-
age needed to observe these variations, but
satellite instruments cannot distinguish between
natural and anthropogenic contributions to total
aerosol forcing. The anthropogenic component
can be estimated using physical models of
aerosol creation and dispersal constrained by
available observations.

Satellites increasingly are used to provide ob-
servational estimates of the “direct effect” of
aerosols on the scattering and absorption of ra-
diation. These estimates range from –0.35 +/–
0.25 W/m2 (Chung et al. 2005) to –0.5 +/– 0.33
W/m2 (Yu et al. 2006) to –0.8 +/– 0.1 W/m2

(Bellouin et al. 2005). The fact that two of these
three estimates do not overlap suggests incom-
plete uncertainty analysis in these studies. In
particular, each calculation must decide how to
extract the anthropogenic fraction of aerosol.
Global direct forcing by aerosols is estimated
by the IPCC AR4 as –0.2 +/– 0.2 W/m2, ac-
cording to models, and –0.5 +/– 0.4 W/m2,
based upon satellite estimates and models. This
central estimate is smaller in magnitude than the
2001 IPCC estimate of –0.9 +/– 0.5 W/m2.

In addition to their direct radiative forcing,
aerosols also act as cloud condensation nuclei.
Through this and other mechanisms, they alter
the radiative forcing of clouds (Twomey 1977;
Albrecht 1989; Ackerman et al. 2004). Complex
interactions among aerosols and cloud physics
make this “aerosol indirect effect” very difficult
to measure, and model estimates of it vary
widely. This effect was generally omitted from

the IPCC AR4 models, although, among the
U.S. CMIP3 models, it was included in GISS
ModelE where increased cloud cover due to
aerosols results in a 20th Century forcing of –
0.8 W/m2 (Hansen et al. 2007).

4.3.2.2 VARIABILITY OF SOLAR IRRADIANCE AND

VOLCANIC AEROSOLS

Other climate forcings include variability of
solar irradiance and volcanic aerosols. Satellites
provide the only direct measurements of these
quantities at the top of the atmosphere. Satellite
measurements of solar irradiance are available
from the late 1970s and now span about 3 of the
sun’s 11-year magnetic or sunspot cycles. Ex-
tracting a long-term trend from this relatively
brief record (Wilson et al. 2003) is difficult.
Prior to the satellite era, solar variations are in-
ferred using records of sunspot area and number
and cosmic ray–generated isotopes in ice cores
(Foukal et al. 2006), which are converted into
irradiance variations using empirical relations
The U.S. CMIP3 models all use the solar re-
construction by Lean, Beer, and Bradley (1995)
with subsequent updates.

Volcanic aerosols prior to the satellite era are in-
ferred from surface estimates of aerosol optical
depth. The radiative calculation requires aerosol
amount and particle size, which is inferred
using empirical relationships with optical depth
derived from recent eruptions. The GFDL and
GISS models use updated versions of the Sato
et al. (1993) eruption history, while the CCSM
uses Ammann et al. (2003). As with solar vari-
ability, different reconstructions of volcanic
forcing differ substantially (see, e.g., Lindzen
and Giannitsis 1998). Land-use changes also are
uncertain, and they can be of considerable sig-
nificance locally. Global models, however, typ-
ically show very modest global responses, as
discussed in Hegerl et al. (2007).

Studies attributing 20th Century global warming
to various natural and human-induced forcing
changes clearly are hindered by these uncer-
tainties in radiative forcing, especially in the
solar and aerosol components. The trend in total
solar irradiance during the last few decades (av-
eraging over the sun’s 11-year cycle) apparently
is negative and thus cannot explain recent global
warming (Lockwood and Fröhlich 2007). The
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connection between solar energy output
changes and the warming earlier in the 20th Cen-
tury is more uncertain. With the solar recon-
structions assumed in the CMIP3 models, much
of the early 20th Century warming is driven by
solar variations, but uncertainties in these re-
constructions do not allow confident attribution
statements concerning this early-century warm-
ing. The large uncertainties in aerosol forcing
are a more important reason that the observed
late 20th Century warming cannot be used to
provide a sharp constraint on climate sensitivity.
We do not have good estimates of the fraction of
greenhouse gas forcing that has been offset by
aerosols.

4.4 OCEAN HEAT UPTAKE AND
CLIMATE SENSITIVITY

As noted above, the rate of heat uptake by the
ocean is a primary factor determining transient
climate response (TCR): the larger the heat up-
take by the oceans, the smaller the initial re-
sponse of Earth’s surface temperature to
radiative forcing (e.g., Sun and Hansen 2003).
Studies show (e.g., Völker, Wallace, and Wolf-
Gladrow 2002) that CO2 uptake by the ocean
also is linked to certain factors that control heat
uptake, albeit not in a simple fashion. In an
AOGCM, the ocean component’s ability to take
up heat depends on vertical mixing of heat and
salt and how the model transports heat between
low latitudes (where heat is taken up by the
ocean) and high latitudes (where heat is given
up by the ocean). The models make use of sev-
eral subgrid-scale parameterizations (see Chap-
ter 2), which have their own uncertainties. Thus,
as part of understanding a model’s climate-sen-
sitivity value, we must assess its ability to rep-
resent the ocean’s mixing processes and the
transport of its heat, as well as feedbacks among
the ocean, ice, and atmosphere.

The reasons for differing model estimates of
ocean uptake are incompletely understood. As-
sessments typically compare runs of the same
model or output from different AOGCMs.
Raper, Gregory, and Stouffer (2002) examined
climate sensitivity and ocean heat uptake in a
suite of then-current AOGCMs. They calculated
the ratio of the change in heat flux (from the
surface to the deep ocean) to the change in tem-
perature (Gregory and Mitchell 1997) and

found in general that models with lower ocean-
uptake efficiency had lower climate sensitivity,
as expected (Hansen et al. 1985; Wigley and
Schlesinger 1985). Uptake efficiency can be
thought of as the amount of heat the ocean ab-
sorbs through mixing relative to the change in
surface temperature (e.g., to reproduce the ob-
served 20th Century warming despite a high cli-
mate sensitivity, a model needs large heat export
to the deep ocean). Comparing the current gen-
eration of AOGCMs with the previous genera-
tion, however, Kiehl et al. (2006) found that the
atmospheric component of the models is the pri-
mary reason for different transient climate sen-
sitivities, and the ocean component’s ability to
uptake heat is of secondary importance. Ocean
heat-uptake efficiency values calculated in this
study differ substantially from those in Raper et
al. (2002).

Despite these complexities, modern ocean
GCMs are able to transport both heat
(AchutaRao et al. 2006) and passive tracers
such as chlorofluorocarbons and radiocarbon
(Gent et al. 2006; Dutay et al. 2002) consistent
with the limited observations available for these
quantities. Better observations in the future—
particularly of the enhanced ocean warming ex-
pected from the anthropogenic greenhouse
effect—should provide stronger constraints on
modeled ocean transports.

4.5 IMPACT OF CLIMATE
SENSITIVITY ON USING MODEL
PROJECTIONS OF FUTURE
CLIMATES

This chapter has emphasized the global and an-
nual mean of surface temperature change even
though practical applications of climate change
science involve particular seasons and loca-
tions. The underlying assumption is that local
climate impacts scale with changes in global
mean surface temperature (Santer et al. 1990).
In that case, time histories of global mean tem-
perature—obtained from a simple model of
global mean temperature, run under a variety of
forcing scenarios—could be combined with a
single AOGCM-produced map of climate
change normalized to the global mean surface
temperature change. In that way, the regional
changes expected for many different climate-
forcing scenarios could be obtained from just



50

The U.S. Climate Change Science Program Chapter 4 - Model Climate Sensitivity

one AOGCM simulation using one idealized
forcing scenario such as atmospheric CO2 dou-
bling (Oglesby and Saltzman 1992) or 1% per
year increasing CO2 (Mitchell et al. 1999). This
“pattern scaling” assumption also permits the
gauging of effects on regional climate change
that arise from different estimates of global cli-
mate sensitivity. For example, if an AOGCM
with TCR = 1.5 K predicts temperature and pre-
cipitation changes ΔT and ΔP as a function of
season and location in a 21st Century climate
simulation, and if investigators believe that TCR
= 1.0 K is a better estimate of the real world’s
climate sensitivity, then, under the pattern-scal-
ing assumption, they would reduce the local ΔT
and ΔP values by 50%.

Although it introduces its own uncertainties, the
pattern-scaling assumption increasingly is used
in climate impact assessments (e.g., Mitchell
2003; Ruosteenoja, Tuomenvirta, and Jylha
2007). For example, the annual mean tempera-
ture change averaged over the central United
States during the 21st Century for any of the
projections in the IPCC Special Report on
Emissions Scenarios shows that about 75% of
the variance among the CMIP3 models is ex-
plained by their differing global mean warming
(B. Wyman, personal communication). (The
central United States is defined in this context
following Table 11.1 in Christensen et al. 2007.)
Precipitation patterns, in contrast, do not scale
as well as temperature patterns due to sharp
variations between locally decreasing and lo-
cally increasing precipitation in conjunction
with global warming.
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Although a typical use of atmosphere-ocean general circulation model (AOGCM) output for cli-

mate impact assessment focuses on one particular region such as a river basin or one of the 50

United States, knowing model simulation overall accuracy on continental to global scales is im-

portant. Fidelity in simulating climate on the largest scales is a necessary condition for credible

predictions of future climate on smaller scales. Model developers devote great effort to assess-

ing the level of agreement between simulated and observed large-scale climate, both for the pres-

ent day and for the two centuries since the Industrial Era began. Unlike physical theories of such

fundamentally simple systems as the hydrogen atom, AOGCMs cannot promise precise accuracy

for every simulated variable on all relevant space and time scales. Nevertheless, before applying a

model to a practical question, users should demand reasonable overall agreement with observa-

tions, with the definition of “reasonable” in part subjective and dependent on the problem at

hand. Here we provide an overview of how well modern AOGCMs satisfy this criterion.

5.1 MEAN SURFACE
TEMPERATURE AND
PRECIPITATION

Simulations of monthly near-surface air tem-
perature and precipitation provide a standard
starting point for model evaluation since these
fields are central to many applications. The two
fields also illustrate the difficulty in designing
appropriate metrics for measuring model quality.

By most measures, modern AOGCMs simulate
the basic structure of monthly mean near-sur-
face temperatures quite well. The globally aver-
aged annual mean value generally lies within
the observed range (~286 to 287 K) of modern
and preindustrial values; this agreement, how-
ever, is in part a consequence of the “final tun-

ing” of the models’ energy balance as described
in Chapter 2 and by itself is not a stringent test
of model quality. More relevant is consideration
of space and time variations about the global an-
nual mean (including the seasonal cycle). The
overall correlation pattern between simulations
and observations typically is 95 to 98%, and
variation magnitudes typically agree within
±25% (Covey et al. 2003). This level of success
has been retained in the latest generation of
models that allow ocean and atmosphere to ex-
change heat and water without artificial adjust-
ments (Randall et al. 2007). Nevertheless, as
shown below, local errors in surface tempera-
ture that are clearly outside the bounds of ob-
servational uncertainty persist in the latest
generation of models.
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AOGCM simulations are considerably less ac-
curate for monthly mean precipitation than for
temperature. The space-time correlation be-
tween models and observations typically is only
about 50 to 60% (Covey et al. 2003). As we dis-
cuss below, these poor correlations originate
mainly in the tropics, where precipitation varies
greatly over relatively small ranges of latitude
and longitude. Strong horizontal gradients in the
field lead to a significant drop in correlations
with observations, even with only slight shifts
in the modeled precipitation distribution. These
modest correlations are relevant for precipita-
tion at a particular location, but AOGCMs gen-
erally reproduce the observed broad patterns of
precipitation amount and year-to-year variabil-
ity (see Fig. 5.1 and Dai 2006). One prominent
error is that models without flux adjustment
typically fail to simulate the observed north-
west-to-southeast orientation of a large region
of particularly heavy cloudiness and precipita-
tion in the southwest Pacific Ocean. Instead,
these models tend to rotate this convergence
zone into an east-west orientation, producing an
unrealistic pair of distinct, parallel convection
bands straddling the equator instead of a con-
tinuous Inter-Tropical Convergence Zone
(ITCZ). The double-ITCZ error has been frus-
tratingly persistent in climate models despite
much effort to correct it.

Another discrepancy between models and ob-
servations appears in the average day-night
cycle of precipitation. While the model’s diurnal
temperature cycle exhibits general agreement
with observations, simulated cloud formation
and precipitation tend to start too early in the
day. Also, when precipitation is sorted into light,
moderate, and heavy categories, models repro-
duce the observed extent of moderate precipi-
tation (10 to 20 mm/day) but underestimate that
of heavy precipitation and overestimate the ex-
tent of light precipitation (Dai 2006). Additional
model errors appear when precipitation is stud-
ied in detail for particular regions [e.g., within
the United States (Ruiz-Barradas and Nigam
2006)].

For illustration, we show examples from two of
the U.S. models discussed in Chapter 4. In Fig.
5.1 (Delworth et al. 2006) and Fig. 5.2 (Collins
et al. 2006a), simulated and observed maps of
surface temperature and even precipitation ap-
pear rather similar at first glance. Constructing
simulated-minus-observed difference maps,
however, reveals monthly and seasonal mean
temperature and precipitation errors up to 10°C
and 7 mm/day, respectively, at some points.
CCSM3 temperature-difference maps exhibit
the largest errors in the Arctic (note scale
change in Fig. 5.2d), where continental winter-
time near-surface temperature is overestimated.
AOGCMs find this quantity particularly diffi-
cult to simulate because, for land areas near the
poles in winter, models must resolve a strong
temperature inversion above the surface (warm
air overlying cold air). For precipitation, GFDL
difference maps reveal significant widespread
errors in the tropics, most notably in the ITCZ
region discussed above and in the Amazon
River basin, where precipitation is underesti-
mated by several millimeters per day. Similar
precipitation errors appear in CCSM3 results
(e.g., a 28% underestimate of Amazon annual
mean). AOGCM precipitation errors have seri-
ous implications for Earth system models with
interactive vegetation, because such models use
simulated precipitation to calculate plant growth
(see Chapter 6). Errors of this magnitude would
produce an unrealistic distribution of vegetation
in an Earth system model, for example, by spu-
riously deforesting the Amazon basin.

In summary, modern AOGCMs generally simu-
late continental and larger-scale mean surface
temperature and precipitation with considerable
accuracy, but the models often are not reliable
for smaller regions, particularly for precipita-
tion.
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Figure 5.1a–e. Observed and GFDL Model-Simulated Precipitation (mm/day).
Observed image from P. Xie and P.A. Arkin 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite
estimates, and numerical model outputs. Bulletin American Meteorological Society, 78, 2539–2558. [Other images from Fig. 17 in T.L.
Delworth et al. 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643–
674. Images reproduced with permission of the American Meteorological Society.]
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Figure 5.2a–c. CCSM3 December-January-February Simulated (top panel), Observed (middle panel), and
Simulated-Minus-Observed (bottom panel) Near-Surface Air Temperature for Land Areas (°C).
Note change in scale from 5.2a to 5.2c. [Figures from W. Collins et al. 2006: The Community Climate System Model Version 3 (CCSM3).
J. Climate, 19(11), 2122–2143. Reproduced with permission of the American Meteorological Society.]
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5.2 TWENTIETH CENTURY
TRENDS

Modern AOGCMs are able to simulate not only
the time-average climate but also changes
(trends) in climate over the past 140 years. For
example, Fig. 5.3 shows results from the three
U.S. models and the “average” CMIP3 model.
Plotted in the figure are curves of globally av-
eraged annual mean near-surface temperature
from model simulations and the observational
value as determined from the U.K. Climatic Re-
search Unit (CRU) gridded observational data-
base. Two curves are plotted for the CMIP3
models. The first shows the average over all
CMIP3 models, and the second, the average
over only CMIP3 models that included the ef-
fects of volcanic eruptions. Results from indi-
vidual U.S. models are shown for separate
ensemble members (dotted lines) and for the av-
erage over all ensemble members (continuous
lines). Individual members of a particular model
ensemble differ from each other because they
were run from different initial conditions. Pre-
cise initial conditions, especially deep-ocean

temperature and salinity, are not known for
1860. The spread among individual simulations
from the same model (the dotted-line curves)
thus indicates uncertainty in model-simulated
temperature arising from lack of knowledge
about initial conditions.

These results demonstrate that modern climate
models exhibit agreement with observed global
mean near-surface temperature trends to within
observational uncertainty, despite imprecise ini-
tial conditions and uncertain climate forcing
and heat uptake by the deep ocean (Min and
Hense 2006). Models achieve this agreement
only if they include anthropogenic emissions of
greenhouse gases and aerosols. No plausible
combination of natural climate-forcing factors
allows models to explain the global warming
observed over the last several decades. Indirect
solar effects [e.g., involving cosmic rays and
clouds (Svensmark 2007)] are not generally in-
cluded in AOGCM simulations. These effects
have been proposed occasionally as causes of
global warming, although over the past 20 years
their trends would, if anything, lead to cooling

Figure 5.2d. CCSM3 Annual Mean Simulated-Minus-Observed Sea Surface
Temperature (°C). 
[Figure from W. Collins et al. 2006: The Community Climate System Model Version 3 (CCSM3). J. Climate,
19(11), 2122–2143. Reproduced with permission of the American Meteorological Society.]
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(Lockwood and Fröhlich 2007). Unless the
models grossly underestimate the climate sys-
tem’s natural internally generated variability or
are all missing a large unknown forcing agent,
the conclusion is that most recent warming is
anthropogenic (IPCC 2007b).

Nevertheless, total climate forcing during the
20th Century is not accurately known, especially
the aerosol component (see Chapter 2). Aerosol
forcing used in these simulations, however, is
derived from aerosol parameterizations con-
strained by satellite and ground-based measure-
ments of the aerosols themselves and was not
designed to obtain a fit to observed global mean
temperature trends. The observed trend in sur-
face temperature can result from models with
different aerosol forcing (Schwartz 2007). Thus,
20th Century temperature records cannot distin-
guish models that would warm by differing
amounts for the same total forcing.

Note that climate sensitivity is not prescribed in
AOGCMs. Instead, this sensitivity emerges as a
result of a variety of lower-level modeling

choices. In contrast to simple energy-balance
models that predict only the global mean tem-
perature using a limited representation of cli-
mate physics, an AOGCM’s climate sensitivity
is difficult to specify a priori. More fundamen-
tally, AOGCMs, unlike simpler climate models,
have far fewer adjustable parameters than the
number of observations available for model
evaluation (Randall et al. 2007). Thus, an
AOGCM’s multidimensional output can be
compared to observations independent of this
adjustment (e.g., using observed trends in re-
gional temperature). Agreement between mod-
eled and observed trends has been described for
temperature trends on each inhabited continent
(Min and Hense 2007); for trends in climate ex-
tremes, such as heat-wave frequency and frost-
day occurrence (Tebaldi et al. 2006); and for
trends in surface pressure and Arctic sea ice (see
Chapter 9 in IPCC 2007), all of which comple-
ment comparisons between modeled and ob-
served time-averaged climate discussed in the
following sections.

Figure 5.3a. Simulation
of 20th Century
Globally Averaged
Surface Temperature
from GFDL CM2.1.
“CRU” is the value based on
the Climate Research Unit
gridded observational
dataset, “IPCC Mean” is the
average value of all CMIP3
models, and “IPCC Mean
Volc” is the average of all
CMIP3 models that included
volcanic forcing. Individual
realizations of the CMIP3 20th

Century experiment are
denoted by the dotted
curves labeled “run(1–3),”
and the ensemble mean is
marked “Mean.”
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Figure 5.3b. Simulation
of 20th Century
Globally Averaged
Surface Temperature
from GISS Model E-R.
Curve labels are the same as
in Fig. 5.3a.
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Figure 5.3c. Simulation
of 20th Century
Globally Averaged
Surface Temperature
from CCSM3.
Curve labels are the same as
in Fig. 5.3a.
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Figure 5.3d.
Comparison of
Simulations of 20th

Century Globally
Averaged Surface
Temperature from the
Three U.S. CMIP3
Models. 
Model curves represent
ensemble means for CCSM3
(ncar_ccsm3_0), GISS Model
E-R (giss_e_r), and GFDL
CM2.1 (gfdl_cm2_1). “CRU,”
“IPCC Mean,” and “IPCC
Mean Volc” labels are the
same as in Fig. 5.3a.
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As an example of 20th Century temperature
trends on continental-to-global spatial scales
and multidecadal time scales, Fig. 5.4 shows
global maps for different time periods between
1880 and 2003 as observed and simulated by
GISS ModelE (Hansen et al. 2006; also see
Knutson et al. 2006). The figure shows general
agreement between model and observations not
only for the overall period but also for segments
1880 to 1940 and 1979 to 2003, which encom-
pass periods of early and late 20th Century
warming. For 1940 to 1979, the model simu-
lates only a small change in global mean tem-
perature in agreement with observations, but it
fails to simulate the strong north polar cooling
observed for this period. As a result, the model-
simulated global mean-temperature change
(upper right corner of each frame) is slightly
positive rather than slightly negative as ob-
served. Part of this discrepancy may result from
chaotic fluctuations within observed climate
that the model cannot synchronize correctly due
to inprecise knowledge of the initial conditions
in the 19th Century period. These chaotic fluc-
tuations generally are more important in re-

gional trends than in the global average, where
uncorrelated fluctuations in different regions
tend to cancel. For both 20th Century warming
periods, the model simulates, but underesti-
mates, the high-latitude amplification of global
warming. Additional discrepancies between
AOGCMs and observations appear at smaller
scales. For example, model-simulated trends do
not consistently match the observed lack of 20th

Century warming in the central United States
(Kunkel et al. 2006).

5.2.1 Trends in Vertical Temperature

While models simulate the 20th Century warm-
ing observed at the surface, agreement is less
obvious with tropospheric observations from
satellites and weather balloons. This issue was
the focus of CCSP SAP 1.1 (CCSP 2006). Since
1979 (beginning of the satellite record), glob-
ally averaged warming in the troposphere ac-
cording to climate models is within the range of
available observations. Within the tropics, the
model-simulated troposphere warms more rap-
idly than observed (see CCSP 2006, Fig. 5.4 F–

Figure 5.4. Near-Surface Temperature Changes as Observed (top panels) and as
Simulated by GISS ModelE (bottom panels) for Selected Time Periods Between 1880
and 2003. 
Numbers above upper right panel corners are global means. [Images from Fig. 9 in J. Hansen et al. 2007:
Climate simulations for 1880–2003 with GISS ModelE. Climate Dynamics, 29(7–8), 661–696. Reproduced
with kind permission of Springer Science and Business Media.]
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G). SAP 1.1 noted, however, that “Large struc-
tural uncertainties in the observations . . . make
it difficult to reach more definitive conclusions
regarding the significance and importance of
model-data discrepancies” (CCSP 2006, p. 112
and Section 5.4).

Research since publication of SAP1.1 has con-
tinued to highlight uncertainties implicit in
measuring the difference between surface and
lower-atmospheric warming. For example,
Thorne et al. (2007) found that the tropical at-
mosphere-to-surface warming ratio in both ob-
servations and model simulations is sensitive to
the time period analyzed. Meanwhile, debate
continues over the best way to process data from
satellites (Christy et al. 2007) and weather bal-
loons (Christy and Spencer 2005). AOGCMs
continue to differ from most published obser-
vations on the ratio of atmosphere-to-surface
warming in the tropics since the beginning of
satellite observations (e.g., as shown by Thorne
et al. 2007, Fig. 3), with the ratio being larger in
the models than is seen in decadal observational
trends.

Paradoxically, trends are more consistent be-
tween models and observations on interannual
time scales. AOGCM simulation of tropical at-
mospheric warming involves mainly subgrid-
scale parameterizations. As discussed in
Chapter 2, these are not as trustworthy as ex-
plicitly computed processes, but internal vari-
ability [primarily due to El Niño–Southern
Oscillation (ENSO)] provides a useful test of
the models’ ability to redistribute heat realisti-
cally. AOGCMs simulate very well the portion
of tropical temperature trends due to interannual
variability (Santer et al. 2005). In addition, ex-
plaining how atmospheric water vapor increases
coincidentally with surface temperature is dif-
ficult (Trenberth, Fasullo, and Smith 2005; San-
ter et al. 2007; Wentz et al. 2007) unless lower
tropospheric temperature also increases coinci-
dentally with surface temperature. While defi-
ciencies in model subgrid-scale parameter-
izations are certainly possible, trends in poorly
documented forcing agents (see Chapter 4) may
prove important in explaining the discrepancy
over the longer time scales. Future research is
required to resolve the issue because tropos-
pheric observations at face value suggest a trend
toward greater tropical instability, which has im-

plications for many aspects of model projec-
tions in the tropics.

5.2.2 Model Simulation of Observed
Climate Variability

The following sections discuss a number of spe-
cific climate phenomena directly or indirectly
related to near-surface temperature, precipita-
tion, and sea level. Numerous studies of climate
change have focused on one or two of these phe-
nomena, so a great deal of information (and oc-
casional debate) has accumulated for each of
them. Here we attempt to summarize the points
that would best give users of AOGCM model
output a general sense of model reliability or
unreliability. Although the following sections
individually note different types of climate vari-
ation, the reader should recognize that the total
amount of natural climate variability forms
background “noise” that must be correctly as-
sessed to identify the “signal” of anthropogenic
climate change. Natural variability in turn sep-
arates into an externally forced part (e.g., from
solar energy output and volcanic eruptions) and
internally generated variability just as weather
varies on shorter time scales because of the sys-
tem’s intrinsic chaotic character. As noted
above, long-term trends in both solar and vol-
canic forcing during the past few decades have
had a cooling rather than warming effect. It fol-
lows that if global warming during this period is
not anthropogenic, then the climate system’s in-
ternal variation is the most likely alternative ex-
planation.

Control runs of AOGCMs (in which no changes
in external climate forcing are included) provide
estimates of the level of internally generated cli-
mate variability. Control runs generally obtain
realistic near-surface temperature variability on
annual-to-decadal time scales, although they
typically underestimate variability in areas of
the Pacific and Indian Ocean where ENSO and
the Pacific Decadal Oscillation (PDO) (see
below) predominate (Stouffer, Hegerl, and Tett
2000). Unfortunately, the longest time periods
that are directly relevant to separating natural
from anthropogenic climate change are the least
observed. Assessing variations of surface tem-
perature for time periods longer than 50 to 100
years depends on paleodata such as ice-core
composition and tree-ring thickness. Interpreta-
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tion of these data is made difficult by sparse ge-
ographical coverage and also is complicated by
natural variations in external climate forcing.

5.2.2.1 EXTRA-TROPICAL STORMS

Climate models have developed from numeri-
cal weather-prediction models whose perform-
ance has been judged primarily on their ability
to forecast midlatitude weather. The success of
forecast models in their simulation of midlati-
tude cyclones and anticyclones has resulted in
continuous growth in the value of numerical
weather prediction. The ability of GCMs to gen-
erate realistic statistics of midlatitude weather
also has been central in climate model develop-
ment. This is true not only because midlatitude
weather is important in its own right, but also
because these storms are the primary mecha-
nism by which heat, momentum, and water
vapor are transported by the atmosphere, mak-
ing their simulation crucial for simulation of
global climate. Indeed, a defining feature of at-
mospheric general circulation models
(AGCMs) is that they compute midlatitude eddy
statistics and associated eddy fluxes through ex-
plicit computation of the life cycles of individ-
ual weather systems and not through some
turbulence or parameterization theory. Comput-
ing the evolution of individual eddies may seem
very inefficient when primary interest is in
long-term eddy statistics, but the community
clearly has judged for decades that explicit eddy
simulation in climate models is far superior to
attempts to develop closure theories for eddy
statistics. The latter theories typically form the
basis for Earth system models of intermediate
complexity (EMICs), which are far more effi-
cient computationally than GCMs but provide
less convincing simulations.

Two figures illustrate the quality of simulated
midlatitude eddy statistics from coupled
AOGCMs used in IPCC AR4. Shown for the
GFDL CM2.1 in Fig. 5.5a is wintertime vari-
ance of the north-south velocity component at
300 hPa (in the upper troposphere). This quan-
tity represents the magnitude of variability in
the upper troposphere associated with day-to-
day weather. In Fig. 5.5b, the wintertime pole-
ward eddy heat flux or covariance between
temperature and north-south velocity is shown
at 850 mb (in the lower troposphere). For these
calculations, the monthly means were sub-

tracted before computing variances. In each
case, eddy statistics are compared to estimates
of observed statistics obtained from
NCEP/NCAR Reanalysis (B.Wyman, personal
communication). When analyzing eddy statis-
tics, the data are typically filtered to retain only
those time scales, roughly 2 to 10 days, associ-
ated with midlatitude weather systems. The two
quantities chosen here, however, are sufficiently
dominated by these time scales that they are rel-
atively insensitive to the monthly filtering used
here. In winter, Northern Hemisphere storms
are organized into two major oceanic storm
tracks over the Pacific and Atlantic oceans. His-
torically, atmospheric models of horizontal res-
olutions of 200 to 300 km typically are capable
of simulating midlatitude storm tracks with re-
alism comparable to that shown in the figure.
Eddy amplitudes often are a bit weak and often
displaced slightly equatorward. In spectral mod-
els with resolution coarser than 200 to 300 km,
simulation of midlatitude storm tracks typically
deteriorates significantly (see, e.g., Boyle
1993). General improvements in most models
in the CMIP3 database over previous genera-
tions of models, as described in Chapter 1, are
thought to be partly related to the fact that most
of these models now have grid sizes of 100 to
300 km or smaller. Although even-finer resolu-
tion results in better simulations of midlatitude-
storm structure, including that of warm and cold
fronts and interactions among these storms and
coastlines and mountain ranges, improvements
in midlatitude climate on large scales tend to be
less dramatic and systematic. Other factors be-
sides horizontal resolution are considered im-
portant for details of storm track structure. Such
factors include distribution of tropical rainfall,
which is sensitive to parameterization schemes
used for moist convection, and interactions be-
tween stratosphere and troposphere, which are
sensitive to vertical resolution. Roeckner et al.
(2006), for example, illustrate the importance
of vertical resolution for midlatitude circulation
and storm track simulation.

Lucarini et al. (2006) provide a more detailed
look at the ability of CMIP3 models to simulate
the space-time spectra of observed eddy statis-
tics. These authors view the deficiencies noted,
which vary in detail from model to model, as
serious limitations to model credibility. As in-
dicated in Chapter 1, however, our ability is lim-
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ited in translating measures of model biases into
useful measures of model credibility for 21st

Century projections, and the implications of
these biases in eddy space-time spectra are not
self-evident. Indeed, in the context of simulating
eddy characteristics generated in complex tur-
bulent flows in the laboratory (e.g., Pitsch
2006), the quality of atmospheric simulations,
based closely on fluid dynamical first princi-
ples, probably should be thought of as one of
the most impressive characteristics of current
models. As an example of a significant model
deficiency that plausibly can be linked to limi-

tations in climate projection credibility, note
that the Atlantic storm track, as indicated by the
maximum velocity variance in Fig. 5.5a, follows
a latitude circle too closely and the observed
storm track has more of a southwest-northeast
tilt. This particular deficiency is common in
CMIP3 models (van Ulden and van Oldenborgh
2006) and is related to difficulty in simulating
the blocking phenomenon in the North Atlantic
with correct frequency and amplitude. Van
Ulden and van Oldenborgh make the case that
this bias is significant for the quality of regional
climate projections over Europe.
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5.2.2.2 TROPICAL STORMS

Tropical storms (hurricanes in the Atlantic and
typhoons in the Pacific and Indian oceans) are
too small to be simulated reliably in the class of
global-climate models currently used for cli-
mate projections. There is hope for simulating
regional climate aspects that control the gene-
sis of tropical depressions, however. Vitart and
Anderson (2001), for example, identified trop-
ical storm-like vortices in simulations with
models of this type, demonstrating some skill

in simulating the effects of El Niño on Atlantic
storm frequency.

Simulations with atmospheric models are
steadily moving to higher resolutions (e.g.,
Bengtsson, Hodges, and Esch 2007). The recent
20-km–resolution simulation with an atmos-
pheric model over prescribed ocean tempera-
tures by Oouchi et al. (2006) is indicative of the
kinds of modeling that will be brought to bear
on this problem in the next few years. Experi-
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ence with tropical storm forecasting suggests
that this resolution should be adequate for de-
scribing many aspects of the evolution of ma-
ture tropical storms and possibly the generation
of storms from incipient disturbances, but prob-
ably not tropical storm intensity. A promising
alternative approach is described by Knutson et
al. (2007), in which a regional model of com-
parable resolution (18 km) is used in a down-
scaling framework (see Chapter 3) to simulate
the Atlantic hurricane season. Given observed
year-to-year variations in the large-scale atmos-
phere structure over the Atlantic Ocean, the
model is capable of simulating year-to-year
variations in hurricane frequency over a 30-year
period with a correlation of 0.7 to 0.8. It also
captures the observed trend toward greater hur-
ricane frequency in the Atlantic during this pe-
riod. These results suggest that downscaling
using models of this resolution may be able to
provide a convincing capability for tropical
storm frequency projections into the future, al-
though these projections still will rely on the
quality of global model projections for changes
in sea-surface temperature, atmospheric stabil-
ity, and vertical shear.

5.2.2.3 MONSOONS

A monsoonal circulation is distinguished by its
seasonal reversal after the sun crosses the equa-
tor into the new summer hemisphere. Rain is
most plentiful in, if not entirely restricted to,
summer within monsoonal climates, when con-
tinental rainfall is supplied mainly by evapora-
tion from the nearby ocean. This limits the reach
of monsoon rains to the distance over which
moisture can be transported onshore (Privé and
Plumb 2007). Variations in the monsoon’s spa-
tial extent from year to year determine which
inland regions experience drought.

Over a billion people are dependent on the ar-
rival of monsoon rains for water and irrigation
for agriculture. The Asian monsoon during bo-
real summer is the most prominent example of
a monsoon circulation dominating global rain-
fall during this season. However, the summer
rainfall maximum and seasonal reversal of
winds also indicate monsoon circulations in
West Africa and the Amazon basin. In addition,
during boreal summer, air flows off the eastern
Pacific Ocean toward Mexico and the American
Southwest while, over the Great Plains, mois-

ture from the Gulf of Mexico brings an annual
peak in rainfall. Thus, the climate in these re-
gions also is described as monsoonal.

Because of the Asian monsoon’s geographical
extent, measures of the fidelity of Asian mon-
soonal simulations can differ depending on spe-
cific regional focus and the metrics being used.
Kripalani et al. (2007) judged that 3/4 of the 18
analyzed coupled models match the timing and
magnitude of the summertime peak in precipi-
tation over East Asia between 100 and 145°E
and 20 to 40°N evident in the NOAA-NCEP
Climate Prediction Center’s Merged Analysis of
Precipitation (CMAP, Xie, and Arkin 1997).
However, only half of these models were able to
reproduce the gross observed spatial distribu-
tion of monsoon rainfall and its migration along
the coast of China toward the Korean peninsula
and Japan. Considering a broader range of lon-
gitude (40 to 180°E) that includes the Indian
subcontinent, Annamalai, Hamilton, and Sper-
ber (2007) found that 6 of 18 AOGCMs signif-
icantly correlated with the observed spatial
pattern of CMAP precipitation from June
through September. (These six models also pro-
duced relatively realistic simulation of ENSO
variability, which is known to influence inter-
annual variations in the Asian summer mon-
soon.) Kitoh and Uchiyama (2006) computed
the spatial correlation and root-mean-square
error of simulated precipitation over a similar
region and found, for example, the GFDL mod-
els in the top tercile with a spatial correlation
exceeding 0.8.

During boreal winter, Asian surface winds are
directed offshore: from the northeast over India
and the northwest over East Asia. Hori and
Ueda (2006) provide correlations between ob-
served spatial distributions of surface pressures
and 850-mb zonal winds during the East Asian
winter monsoon with winds and pressures sim-
ulated by nine CMIP3 models. Correlations for
zonal winds, for example, vary from 0.96 to
0.75. Monsoonal simulations in these models
clearly vary considerably in quality, more so
perhaps than other circulation features. Ob-
served year-to-year variability of the West
African monsoon is related to remote ocean
temperatures in the North and South Atlantic
and Indian oceans (Rowell et al. 1992; Zhang
and Delworth 2006) as well as to temperatures
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in the nearby Gulf of Guinea. Cook and Vizy
(2006) found that slightly more than half of 18
analyzed coupled models reproduced the ob-
served precipitation maximum over land from
June through August. Of these models, only six
(including GISS ModelE-H and both GFDL
models) reproduced the observed anticorrela-
tion between Gulf of Guinea ocean temperature
and Sahel rainfall.

The late 20th Century Sahel drought was a dra-
matic change in the Earth’s hydrological cycle
that plausibly must be simulated by climate
models if we are to have any confidence in their
ability to project future climate in this region.
Atmospheric models, when run over observed
oceanic temperatures, simulate this drought rea-
sonably well (Hoerling et al. 2006). In these
models, the drought is at least partly forced by
warming of the Northern Hemisphere oceans,
particularly the North Atlantic, with respect to
Southern Hemisphere oceans, especially the In-
dian Ocean and Gulf of Guinea. Although the
consensus is that these variations in ocean tem-
perature gradients are at least partly due to nat-
ural variability, they may have been partly
anthropogenically forced. Analysis of CMIP3
simulations of the 20th Century by Biasutti and
Giannini (2006), supporting the earlier model-
ing study of Rotstayn and Lohmann (2002),
suggests that aerosol forcing in these models
played a part in generating this drought by cool-
ing the North Atlantic with respect to other
ocean basins. A small number of coupled mod-
els simulate droughts of the observed magni-
tude, including GFDL models (Held and Soden
2006), but why some models are more realistic
in this regard than others is not understood.

Rainfall over the Sahel and Amazon are anti-
correlated: when the Gulf of Guinea warms,
rainfall generally is reduced over the Sahel but
increases over South America. Amazon rainfall
also depends on the eastern equatorial Pacific,
and, during an El Niño, rainfall is reduced in the
Nordeste region of the Amazon. Li et al. (2006)
compare the hydrological cycle of 11 CGCMs
over the Amazon during the late 20th and 21st

centuries. Based on a comparison to CMAP
rainfall, the GISS ModelE-R is among the best.

The ability of climate models to simulate North-
ern Hemisphere summer rainfall over the U.S.

Great Plains and Mexico was summarized by
Ruiz-Barradas and Nigam (2006). Models gen-
erally have more difficulty in simulating sum-
mer rainfall in the Great Plains than winter
rainfall, and this disparity probably should be
thought of as reflecting the quality of future
rainfall projections as well. Strengths and weak-
nesses vary considerably across the models. As
an example, GISS ModelE-H closely matches
the annual precipitation cycle over the Great
Plains and Mexico and is one of two models to
simulate interannual precipitation variations
significantly correlated with observed variabil-
ity during the second half of the 20th Century.

Initial monsoon evaluations simulated by the
most recent generation of climate models have
emphasized the seasonal time scale. However,
subseasonal variations, such as break periods
when the monsoon rains are interrupted tem-
porarily, are crucial to forecasting the mon-
soon’s impact on water supply. Simulating the
diurnal cycle and the local hour of rainfall also
is important to partitioning rainfall between
runoff and transpiration, and these are impor-
tant topics for future model evaluation. Trans-
ports of moisture by regional circulations
beneath model resolution (such as low-level jets
along the Rockies and Andes and tropical cy-
clones) contribute to the onshore transport of
moisture. In general, models show some success
at simulating gross seasonal features of various
monsoon circulations, but studies are limited on
variations of the smaller spatial and time scales
important to specific watersheds and hydrolog-
ical projections.

5.2.2.4 MADDEN-JULIAN OSCILLATIONS

The Madden-Julian Oscillation (MJO) consists
of large-scale eastward-propagating patterns in
humidity, temperature, and atmospheric circu-
lation that strengthen and weaken tropical rain-
fall as they propagate around the Earth in
roughly 30 to 60 days. This pattern often domi-
nates tropical precipitation variability on time
scales longer than a few days and less than a
season, creating such phenomena as 1- to 2-
week breaks in Asian monsoonal rainfall and
weeks with enhanced hurricane activity in the
eastern North Pacific and the Gulf of Mexico.
Inadequate prediction of the evolution of these
propagating structures is considered a main im-
pediment to more useful extended-range
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weather forecasts in the tropics, and improved
simulation of this phenomenon is considered an
important metric for the credibility of climate
models in the tropics.

Nearly all models capture the pattern’s essential
feature, with large-scale eastward propagation
and with roughly the correct vertical structure.
But propagation often is too rapid and ampli-
tudes too weak. Recent surveys of model per-
formance indicate that simulations of MJO
remain inadequate. For example, Lin et al.
(2006), in a study of many CMIP3 models, con-
clude that “… current GCMs still have signifi-
cant problems and display a wide range of skill
in simulating the tropical intraseasonal vari-
ability,” while Zhang et al. (2005) in another
multimodel comparison study, state that “…
commendable progress has been made in MJO
simulations in the past decade, but the models
still suffer from severe deficiencies ….” As an
example of recent work, Boyle et al. (2008) at-
tempted, with limited success, to determine
whether two U.S. CMIP3 models could main-
tain a preexisting strong MJO pattern when ini-
tialized with observations [from the Tropical
Ocean Global Atmosphere–Coupled Ocean At-
mosphere Response Experiment (called TOGA-
COARE) field experiment].

The difficulty in simulating MJO is related to
the phenomenon’s multiscale nature: the propa-
gating pattern itself is large enough to be re-
solvable by climate models, but the convection
and rainfall modulated by this pattern, which
feed back on the large-scale environment, occur
on much smaller, unresolved scales. In addition
to this dependence on parameterization of trop-
ical convection, a long list of other effects has
been shown by models and observational stud-
ies to be important for MJO. These effects in-
clude the pattern of evaporation generated as
MJO propagates through convecting regions,
feedback from cloud-radiative interactions, in-
traseasonal ocean temperature changes, the di-
urnal cycle of convection over the ocean, and
the vertical structure of latent heating , espe-
cially the proportion of shallow cumulus con-
gestus clouds and deep convective cores in
different phases of oscillation (Lin et al. 2004)].

A picture seems to be emerging that simulation
difficulty may not be due to a single model de-

ficiency but is a result of the phenomenon’s
complexity, given the long list of factors thought
to be significant. In several multimodel studies
such as Lin et al. (2006), a few models do per-
form well. However, without a clearer under-
standing of how these factors combine to
generate the observed characteristics of MJO,
maintaining a good simulation when the model
is modified for other reasons is difficult, as is
applying the understanding gained from one
model’s successful simulation to other models.
Whether models with superior MJO simulations
should be given extra weight in multimodel
studies of tropical climate change is unclear.

5.2.2.5 EL NIÑO–SOUTHERN OSCILLATION

By the mid-20th Century, scientists recognized
that a local anomaly. in rainfall and oceanic up-
welling near the coast of Peru was in fact part of
a disruption to atmospheric and ocean circula-
tions across the entire Pacific basin. During El
Niño, atmospheric mass migrates west of the
dateline as part of the Southern Oscillation, re-
ducing surface pressure and drawing rainfall
into the central and eastern Pacific (Rasmussen
and Wallace 1983). Together, El Niño and the
Southern Oscillation, abbreviated in combina-
tion as ENSO, are the largest source of tropical
variability observed during recent decades. Be-
cause of the Earth’s rotation, easterly winds
along the equator cool the surface by raising
cold water from below, which offsets heating by
sunlight absorption (e.g., Clement et al. 1996).
Cold water is especially close to the surface in
the east Pacific, while warm water extends
deeper in the west Pacific so upwelling has lit-
tle effect on surface temperature there. The
westward increase in temperature along the
equator is associated with a decrease in atmos-
pheric pressure, reinforcing the easterly trade
winds. El Niño occurs when easterly trade
winds slacken, reducing upwelling and warm-
ing the ocean surface in the central and east Pa-
cific.

Changes along the equatorial Pacific have been
linked to global disruptions of climate (Ro-
pelewski and Halpert 1987). During an El Niño
event, the Asian monsoon typically is weakened,
along with rainfall over eastern Africa, while
precipitation increases over the American
Southwest. El Niño raises the surface tempera-
ture as far poleward as Canada, while changes
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in the north Pacific Ocean are linked to decadal
variations in ENSO (Trenberth and Hurrell
1994). In many regions far from eastern equa-
torial Pacific, accurate projections of climate
change in the 21st Century depend upon the ac-
curate projection of changes to El Niño. More-
over, the demonstration that ENSO alters
climate across the globe indicates that even
changes to the time-averaged equatorial Pacific
during the 21st Century will influence climate
far beyond the tropical ocean. For example,
long-term warming of the eastern equatorial Pa-
cific relative to the surrounding ocean will favor
a weaker Asian monsoon year after year, even
in the absence of changes to the size and fre-
quency of El Niño events.

In general, coupled models developed for
CMIP3 are far more realistic than those of a
decade ago, when ENSO variability was com-
paratively weak and some models lapsed into
permanent El Niño states (Neelin et al. 1992).
Even compared to models assessed more re-
cently by the El Niño Simulation Intercompar-
ison Project (called ENSIP) and CMIP2 (Latif
et al. 2001; AchutaRao and Sperber 2002),
ENSO variability of ocean surface temperature
is more realistic in CMIP3 simulations, al-
though sea-level pressure and precipitation
anomalies show little recent improvement
(AchutaRao and Sperber 2006). Part of this
progress is the result of increased resolution of
equatorial ocean circulation that has accompa-
nied increases in computing speed. Table 5.1
shows horizontal and vertical resolution near

the equator in oceanic components of the seven
American coupled models whose output was
submitted to CMIP3.

Along the equator, oceanic waves that adjust the
equatorial temperature and currents to changes
in the wind are confined tightly to within a few
degrees of latitude. To simulate this adjustment,
the ocean state is calculated at points as closely
spaced as 0.27 degrees of latitude in the NCAR
CCSM3. NCAR PCM has a half-degree resolu-
tion, while both GFDL models have equatorial
resolution of a third of a degree. This degree of
detail is a substantial improvement compared to
previous generations of models. In contrast, the
GISS AOM and ModelE-R calculate equatorial
temperatures at grid points separated by four de-
grees of latitude. This is broad compared to the
latitudinal extent of cold temperatures observed
within the eastern Pacific. The cooling effect of
upwelling is spread over a larger area, so the
amplitude of the resulting surface temperature
fluctuation is weakened. In fact, both the GISS
AOM models and ModelE-R have unrealistic
ENSO variations that are much smaller than ob-
served (Hansen et al. 2007). This minimizes the
influence of their simulated El Niño and La
Niña events on climate outside the equatorial
Pacific, and we will not discuss these two mod-
els further in this section.

In comparison to previous generations of global
models, where ENSO variability was typically
weak (Neelin et al. 1992), the AR4 coupled
models generally simulate El Niño near the ob-
served amplitude or even above (AchutaRao
and Sperber 2006). The latter study compared
sea-surface temperature (SST) variability within
the tropical Pacific, calculated under preindus-
trial conditions. Despite its comparatively low
two-degree latitudinal grid spacing, the GISS
ModelE-H (among American models) most
closely matches observed SST variability since
the mid-19th Century, according to the HadISST
v1.1 dataset (Rayner et al. 2003). The NCAR
PCM also exhibits El Niño warming close to the
observed magnitude. This comparison is based
on spatial averages within three longitudinal
bands, and GISS ModelE-H, along with NCAR
models, exhibits its largest variability in the
eastern band as observed. However, GISS Mod-
elE-H underestimates variability since 1950,
when the NCAR CCSM3 is closest to observa-

MODEL Longitude Latitude Vertical
Levels

GFDL CM2.0 1 1/3 50

GFDL CM2.1 1 1/3 50

GISS AOM 5 4 13

GISS ModelE-H 2 2 16

GISS ModelE-R 5 4 13

NCAR CCSM3 1.125 0.27 27

NCAR PCM 0.94 0.5 32

*Except for GISS models, spacing of grid points
generally increases away from the equator outside
the ENSO domain, so resolution is highest at the
equator.

Table 5.1. Spacing
of Grid Points at
the Equator in the
American
Coupled Models
Developed for
AR4*



67

Climate Models: An Assessment of Strengths and Limitations

tions (Joseph and Nigam 2006). Although the
fidelity of each model’s ENSO variability de-
pends on the specific dataset and period of com-
parison (c.f. Capotondi, Wittenberg, and Masina
2006; Merryfield 2006; van Oldenborgh, Philip,
and Collins 2005), the general consensus is that
GISS ModelE-H, both NCAR models, and
GFDL CM2.0 have roughly the correct ampli-
tude, while variability is too large by roughly
one-third in GFDL CM2.1. Most models (in-
cluding GISS ModelE-H and both NCAR mod-
els but excluding GFDL models) exhibit the
largest variability in the eastern band of longi-
tude, but none of the CMIP3 models matches
the observed variability at the South American
coast where El Niño was identified originally
(AchutaRao and Sperber 2006; Capotondi, Wit-
tenberg, and Masina 2006). This possibly is be-
cause the longitudinal spacing of model grids is
too large to resolve coastal upwelling and its in-
terruption during El Niño (Philander and
Pacanowski 1981). Biases in atmospheric mod-
els (e.g., underestimating persistent stratus
cloud decks along the coast) also may con-
tribute (Mechoso et al. 1995).

El Niño occurs every few years, albeit irregu-
larly. The spectrum of anomalous ocean tem-
perature shows a broad peak between 2 and 7
years, and multidecadal variations occur in
event frequency and amplitude. Almost all AR4
models have spectral peaks within this range of
time scales. Interannual power is distributed
broadly within the American models, as ob-
served, with the exception of NCAR CCSM3,
which exhibits strong biennial oscillations
(Guilyardi 2006).

Although models generally simulate the ob-
served magnitude and frequency of events, re-
producing their seasonality is more elusive.
Anomalous warming typically peaks late in the
calendar year, as originally noted by South
American fisherman. Among American mod-
els, this seasonal dependence is simulated only
by NCAR CCSM3 (Joseph and Nigam 2006).
Warming in GFDL CM2.1 and GISS ModelE-
H is nearly uniform throughout the year, while
warming in NCAR PCM is largest in Decem-
ber but exhibits a secondary peak in early sum-
mer. The mean seasonal cycle along the
equatorial Pacific also remains a challenge for
the models. Each year, the east Pacific cold

tongue is observed to warm during boreal
spring and cool again late in the calendar year.
GFDL CM2.1 and NCAR PCM1 have the
weakest seasonal cycle among American mod-
els, while GISS ModelE-H, GFDL 2.0, and
NCAR CCSM3 are closest to the observed am-
plitude (Guilyardi 2006). Among the worldwide
suite of CMIP3 models, amplitude of the sea-
sonal cycle of equatorial ocean temperature
generally varies inversely with the ENSO
cycle’s strength.

Several studies have compared mechanisms
generating ENSO variability in CMIP3 models
to those inferred from observations (e.g., van
Oldenborgh, Philip, and Collins 2005; Guilyardi
2006; Merryfield 2006; Capotondi, Wittenberg,
and Masina 2006). Models must simulate the
change in ocean upwelling driven by changes in
surface winds, which in turn are driven by re-
gional contrasts in ocean temperature. In gen-
eral, GFDL2.1 is ranked consistently among
American models as providing the most realis-
tic simulation of El Niño. This is not based pri-
marily on its surface-temperature variability
(which is slightly too large) but on its faithful
simulation of the observed relationship between
ocean temperature and surface wind, along with
wind-driven ocean response. While SST vari-
ability in CMIP3 models is controlled by anom-
alies of either upwelling rate or temperature,
these processes alternate in importance over
several decades within GFDL CM2.1 as ob-
served (Guilyardi 2006). Since the 1970s the
upwelling temperature, rather than the rate, has
been the predominant driver of SST variability
(Wang 1995). A confident prediction of future
El Niño amplitude requires both the upwelling
rate and temperature, along with their relative
amplitude, to be simulated correctly. This re-
mains a challenge.

El Niño events are related to climate anomalies
throughout the globe. Models with more realis-
tic ENSO variability generally exhibit an anti-
correlation with the strength of the Asian
summer monsoon (e.g., Annamalai, Hamilton,
and Spencer 2007), while 21st Century changes
to Amazon rainfall have been shown to depend
on projected trends in the tropical Pacific (Li et
al. 2006). El Niño has a long-established rela-
tion to North American climate (Horel and Wal-
lace 1981), assessed in CMIP3 models by
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Joseph and Nigam (2006). This relation is
strongest during boreal winter, when tropical
anomalies are largest. Anomalous circulations
driven by rainfall over the warming equatorial
Central Pacific radiate atmospheric distur-
bances into midlatitudes amplified within the
north Pacific storm track (Sardeshmukh and
Hoskins 1988; Held, Lyons, and Nigam 1989;
Trenberth et al. 1998). To simulate ENSO’s in-
fluence on North America, models must repre-
sent realistic rainfall anomalies in the correct
season so the connection is amplified by win-
tertime storm tracks. The connection between
equatorial Pacific and North American climate
is simulated most accurately by the NCAR
PCM model (Joseph and Nigam 2006). In
GFDL CM2.1, North American anomalies are
too large, consistent with the model’s excessive
El Niño variability within the equatorial Pacific.
The connection between the two regions is re-
alistic if the model’s tropical amplitude is ac-
counted for. In the GISS model, anomalous
rainfall during ENSO is small, consistent with
the weak tropical wind stress anomaly cited
above. The influence of El Niño over North
America is nearly negligible in this model. The
weak rainfall anomaly presumably is a result of
unrealistic coupling between atmospheric and
ocean physics. When SST instead is prescribed
in this model, rainfall calculated by the GISS
ModelE AGCM over the American Southwest
is significantly correlated with El Niño as ob-
served.

Realistic simulation of El Niño and its global
influence remains a challenge for coupled mod-
els because of myriad contributing processes
and their changing importance in the observa-
tional record. Key aspects of coupling between
ocean and atmosphere—the relation between
SST and wind stress anomalies, for example—
are the result of complicated interactions among
resolved model circulations, along with para-
meterizations of ocean and atmospheric bound-
ary layers and moist convection. Simple models
identify parameters controlling the magnitude
and frequency of El Niño, such as the wind
anomaly resulting from a change in SST (e.g.,
Zebiak and Cane 1987; Fedorov and Philander
2000), offering guidance to improve the realism
of fully coupled GCMs. However, in a GCM,
the coupling strength is emergent rather than
prescribed, and it is often unclear a priori how to

change the coupling. Nonetheless, improved
simulations of the ENSO cycle compared to
previous generations (AchutaRao and Sperber
2006) suggest that additional realism can be ex-
pected in the future.

5.2.2.6 ANNULAR MODES

The primary mode of Arctic interannual vari-
ability is the Arctic Oscillation (Thompson and
Wallace 1998), which also is referred to as the
northern annular mode (NAM) and is related to
the North Atlantic Oscillation (Hurrell 1995).
The primary mode of Antarctic interannual vari-
ability is the southern annular mode (SAM)
(Thompson and Wallace 2000), also known as
Antarctic Oscillation. The variability modes are
particularly important for attributing and pro-
jecting climate change; observed circulation
changes in the past few decades (especially in
the Southern Hemisphere) and model-projected
changes in future circulation strongly resemble
these structures.

Coupled climate models have shown skill in
simulating NAM (Fyfe, Boer, and Flato 1999;
Shindell et al. 1999; Miller, Schmidt, and Shin-
dell 2006). In some cases, too much variability
in the simulation of sea-level pressure is asso-
ciated with NAM (Miller, Schmidt, and Shin-
dell 2006). Global climate models also
realistically simulate SAM (Fyfe, Boer, and
Flato 1999; Cai, Whetton, and Karoly 2003;
Miller, Schmidt, and Shindell 2006), although
some details of SAM (e.g., amplitude and zonal
structure) show disagreement among global cli-
mate model simulations and reanalysis data
(Raphael and Holland 2006; Miller, Schmidt,
and Shindell 2006).

In response to increasing concentrations of
greenhouse gases and tropospheric sulfate
aerosols in the 20th Century, the multimodel av-
erage exhibits a positive trend in the annular
mode index in both hemispheres, with decreas-
ing sea-level pressure over the poles and a com-
pensating increase in midlatitudes most
apparent in the Southern Hemisphere (Miller,
Schmidt, and Shindell 2006). A variety of mod-
eling studies also have shown that trends in
stratospheric climate can affect the tropos-
phere’s annular modes (Shindell et al. 1999). In-
deed, an important result from atmospheric
modeling in recent years is the realization that
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the stratospheric ozone hole has contributed sig-
nificantly to observed trends in surface winds
and sea-level pressure distribution in the South-
ern Hemisphere (Thompson and Solomon
2002; Gillett and Thompson 2003). The mod-
els, however, may not be trustworthy in their
simulation of the relative magnitude of green-
house gas and stratospheric ozone effects on the
annular mode. They also may underestimate the
coupling of stratospheric changes due to vol-
canic aerosols with annular surface variations
(Miller, Schmidt, and Shindell 2006; Arblaster
and Meehl 2006).

5.2.2.7 OTHER MODES OF MULTIDECADAL

VARIABILITY

In the Arctic during the last century, two long-
period warm events occurred, one between 1920
and 1950 and another beginning in the late
1970s. Wang et al. (2007) evaluated a set of
CMIP3 models for their ability to reproduce the
amplitudes of air temperature variability of this
character. As examples, CCSM3 and GFDL-
CM2 models contain variance similar to that ob-
served in the Arctic region.

Multidecadal variability in the North Atlantic is
characterized by the Atlantic Multidecadal Os-
cillation (AMO) index, which represents a spa-
tial average of SST (Enfield, Mestas-Nuñez,
and Trimble 2001). Kravtsov and Spannagle
(2007) analyzed SST from a set of current gen-
eration climate models. Their analysis attempts
to separate variability associated with internal
ocean fluctuations from that associated with
changes by anthropogenic contributions. By
isolating the multidecadal period of several re-
gions in the ensemble SST series through sta-
tistical methods, they found that models obtain
the observed magnitude of the AMO (Kravtsov
and Spannagle 2007).

In the midlatitude Pacific region, decadal vari-
ability generally is underrepresented in the
ocean (e.g., volume transports as described by
Zhang and McPhaden 2006), with some mod-
els approaching amplitudes seen in observa-
tions. Examination of complicated feedbacks
between atmosphere and ocean at decadal and
longer scales shows that, while climate models
generally reproduce the SST pattern related to
the Pacific Decadal Oscillation (PDO), ob-
served correlations between PDO and tropical

SST are not seen in the models (e.g., Alexander
et al. 2006).

One of the most difficult areas to simulate is the
Indian Ocean because of the competing effects
of warm water inflow through the Indonesian
archipelago, ENSO, and monsoons. The
processes interact to varying degrees, challeng-
ing a model’s ability to simulate all system as-
pects with observed relative emphasis. An index
used to understand variability is the Indian
Ocean Dipole pattern that combines informa-
tion about SST and wind stress fields (Saji et al.
1999). While most models evaluated by Saji,
Xie, and Yamagata (2005) were able to simulate
the Indian Ocean’s response to local atmos-
pheric forcing in short time periods (semian-
nual), longer-period events such as the ocean’s
response to ENSO changes in the Pacific were
not simulated well.

5.2.3 Polar Climates

Changes in polar snow and ice cover affect the
Earth’s albedo and thus the amount of insola-
tion heating the planet (e.g., Holland and Bitz
2003; Hall 2004; Dethloff et al. 2006). Melting
glaciers and ice sheets in Greenland and western
Antarctica could produce substantial sea-level
rise (Arendt et al. 2002; Braithwaite and Raper
2002; Alley et al. 2005). Polar regions thus re-
quire accurate simulation for projecting future
climate change and its impacts.

Polar regions present unique environments and,
consequently, challenges for climate modeling.
Key processes include sea ice, seasonally frozen
ground, and permafrost (Lawrence and Slater
2005; Yamaguchi, Noda, and Kitoh 2005).
Processes also include seasonal snow cover
(Slater et al. 2001), which can have significant
subgrid heterogeneity (Liston 2004), and clear-
sky precipitation, especially in the Antarctic
(King and Turner 1997; Guo, Bromwich, and
Cassano 2003). Polar regions test the ability of
models to handle extreme geophysical behavior
such as longwave radiation in clear, cold envi-
ronments (Hines et al. 1999; Chiacchio, Fran-
cis, and Stackhouse 2002; Pavolonis, Key, and
Cassano 2004) and cloud microphysics in the
relatively clean polar atmosphere (Curry et al.
1996; Pinto, Curry, and Intrieri 2001; Morrison
and Pinto 2005). In addition, polar atmospheric
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boundary layers can be very stable (Duynkerke
and de Roode 2001; Tjernström, Zagar, and
Svensson 2004; Mirocha, Kosovic, and Curry
2005), and their simulation remains an impor-
tant area for model improvement.

For polar regions, much of simulated-variability
assessment has focused on primary modes of
polar interannual variability, along with the
northern and southern annular modes. Less at-
tention has been given to the ability of global
climate-system models to simulate shorter-du-
ration climate and weather variability in polar
regions. Uotila et al. (2007) and Cassano et al.
(2007) evaluated the ability of an ensemble of
15 global climate-system models to simulate
daily variability in sea-level pressure in the
Antarctic and Arctic. In both polar regions, they
found that the ensemble was not able to repro-
duce many features of daily synoptic climatol-
ogy, with only a small subset of models
accurately simulating the frequency of primary
synoptic weather patterns identified in global
reanalysis datasets. U.S. models discussed in de-
tail in Chapter 2 of this report spanned the same
range of accuracy as non-U.S. models, with
GFDL and CCSM models part of a small, ac-
curate subset. More encouraging results were
obtained by Vavrus et al. (2006), who assessed
the ability of seven global climate models to
simulate extreme cold-air outbreaks in the
Northern Hemisphere.

Attention also has been given to the ability of
regional climate models to simulate polar cli-
mate. In particular, the Arctic Regional Climate
Model Intercomparison Project (ARCMIP) en-
gaged a suite of Arctic regional atmospheric
models to simulate a common domain and pe-
riod over the western Arctic (Curry and Lynch
2002). Rinke et al. (2006) evaluated spatial and
temporal patterns simulated by eight ARCMIP
models and found that the model ensemble
agreed well with global reanalyses, despite
some large errors for individual models. Tjern-
strom et al. (2005) evaluated near-surface prop-
erties simulated by six ARCMP models. In
general, surface pressure, air temperature, hu-
midity, and wind speed all were well simulated,
as were radiative fluxes and turbulent momen-
tum flux. The research group also found that
turbulent heat flux was poorly simulated and
that, over an entire annual cycle, the accumu-

lated turbulent heat flux simulated by models
was many times larger than the observed turbu-
lent heat flux (Fig. 5.6).

In global models, polar climate may be affected
by errors in simulating other planetary regions,
but much of the difference from observations
and the uncertainty about projected climate
change stem from current limitations in polar
simulation. These limitations include missing or
incompletely represented processes and poor
resolution of spatial distributions.

As with other regions, model resolution affects
simulation of important processes. In polar re-
gions, surface distributions of snow depth vary
markedly, especially when snow drifting occurs.
Improved snow models are needed to represent
such spatial heterogeneity (e.g., Liston 2004),
which will continue to involve scales smaller
than resolved for the foreseeable future. Frozen
ground, whether seasonally frozen or occurring
as permafrost, presents additional challenges.
Models for permafrost and seasonal soil freez-
ing and thawing are being implemented in land
surface models (see Chapter 2). Modeling soil
freeze and thaw continues to be a challenging
problem as characteristics of energy and water
flowing through soil affect temperature
changes. Such fluxes are poorly understood (Ya-
maguchi, Noda, and Kitoh 2005).

Frozen soil affects surface and subsurface hy-
drology, which influences the surface water’s
spatial distribution with attendant effects on
other parts of the polar climate system such as
carbon cycling (e.g., Gorham 1991; Aurela,
Laurila, Tuovinen 2004), surface temperature
(Krinner 2003), and atmospheric circulation
(Gutowski et al. 2007). The flow of fresh water
into polar oceans potentially alters their circu-
lation, too. Surface hydrology modeling typi-
cally includes, at best, limited representation of
subsurface water reservoirs (aquifers) and hor-
izontal flow of water both at and below the sur-
face. These features limit the ability of climate
models to represent changes in polar hydrology,
especially in the Arctic.

Vegetation has been changing in the Arctic
(Callaghan et al. 2004), and projected warming,
which may be largest in regions where snow and
ice cover retreat, may produce further changes
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in vegetation (e.g., Lawrence and Slater 2005).
Current models use static distributions of vege-
tation, but dynamic vegetation models will be
needed to account for changes in land-atmos-
phere interactions influenced by vegetation.

A key concern in climate simulations is how
projected anthropogenic warming may alter
land ice sheets, whose melting could raise sea
levels substantially. At present, climate models
do not include ice-sheet dynamics (see Chapter
2), and thus cannot account directly for ways in
which ice sheets might change, possibly chang-
ing heat absorption from the sun and atmos-
pheric circulation in the vicinity of ice sheets.

Distributions of snow, ice sheets, surface water,
frozen ground, and vegetation have important
spatial variation on scales smaller than the res-
olutions of typical contemporary climate mod-
els. This need for finer resolution may be
satisfied by regional models simulating just a
polar region. Because both northern and south-
ern polar regions are within circumpolar at-
mospheric circulations (cf. Giorgi and Bi 2000
and Gutowski et al. 2007b), their coupling with
other regions is more limited than in the case of
midlatitude regions, which could allow polar-
specific models that focus on Antarctic and Arc-
tic processes, in part, to improve modeling of
surface-atmosphere exchange processes (Fig.
5.6). Although each process above has been
simulated in finer-scale, stand-alone models,
their interactions as part of a climate system
also need to be simulated and understood.

5.2.3.1 SEA ICE

Sea ice plays a critical role in the exchange of
heat, mass, and momentum between ocean and
atmosphere, and any errors in the sea-ice sys-
tem will contribute to errors in other compo-
nents. Two recent papers (Holland and Raphael
2006; Parkinson, Vinnikov, and Cavalieri 2006a,
b) quantify how current models simulate the cli-
mate system’s sea-ice process. Very limited ob-
servations make any evaluation of sea ice
difficult. The primary observation available is
sea-ice areal concentration. In some compar-
isons, sea-ice extent (the area where local ice
concentration is greater than 15%) is used. For
the past few decades, satellites have made it
possible to produce a more complete dataset of

observations. Observations of ice extent were
fewer before that. Other quantities that might be
evaluated include ice thickness, but, due to lim-
ited observations, comparisons with models are
difficult and will not be discussed further here.

The seasonal pattern in ice growth and decay in
polar regions for all the models is reasonable
(Holland and Raphael 2006; see Fig. 5.7). How-
ever, a large amount of variability between mod-
els occurs in their representation of sea-ice
extent in both Northern and Southern hemi-
spheres. Generally, models do better in simulat-
ing the Arctic than the Antarctic region, as
shown with Fig. 5.8. An example of the com-
plex nature of reproducing the ice field is given
in Parkinson, Vinnikov, and Cavalieri (2006a,b),
which found that all models showed an ice-free
region in winter to the west of Norway, as seen
in observational data, but all also produced too
much ice north of Norway. The authors suggest
that this is because the North Atlantic Current is
not being simulated correctly. In a qualitative
comparison, Hudson Bay is ice covered in win-
ter in all models correctly reproducing the ob-
servations. The set of models having the most
fidelity in the Arctic is not the same as the set
having the most fidelity in the Antarctic. This
difference may be due to distinctive ice regimes
in the north and south or to differences in sim-
ulations of oceanic or meteorological circula-
tions in those regions.

Holland and Raphael (2006) examined carefully
the variability in Southern Ocean sea-ice extent.
As an indicator of ice response to large-scale at-
mospheric events, they compared data from a
set of IPCC AR4 climate models to the atmos-
pheric index SAM for the April–June (AMJ) pe-
riod (see Table 5.2). The models show that ice
variability does respond modestly to large-scale
atmosphere forcing but less than the limited ob-
servations show. Table 5.2 uses the U.S. models
to examine whether models exhibit the observed
out-of-phase buildup of ice between the Atlantic
and Pacific sectors (referred to as the Antarctic
Dipole).
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AMJ SAM and High-Pass
Filtered Fields

AMJ SAM and Detrended
Fields 

Observations 0.47 0.47

CCSM3 0.40 0.44

GFDL-CM2.1 0.39 0.19

GISS-ER 0.30 0.20

The leading mode of sea-ice variability represents a shift of ice from the Atlantic to the Pacific
sector. Bold values are significant at the 95% level, accounting for autocorrelation of the time series. 

[Table modified from Table 1, p. 19, in M.M. Holland and M.N. Raphael 2006: Twentieth Century
simulations of the Southern Hemisphere climate in coupled models. Part II: Sea ice conditions
and variability. Climate Dynamics, 26, 229–245. Reproduced with kind permission of Springer
Science and Business Media.]

Table 5.2. Correlations
of the Leading Mode of
Sea-Ice Variability and
Southern Annular
Mode (SAM) for
Observations and
Model Simulations

Figure 5.6. Cumulative
Fluxes of Surface
Sensible Heat (top
panel) and Latent Heat
(bottom) at the
SHEBA Site. 
Data are from six models
simulating a western Arctic
domain for Sept. 1997
through Sept. 1998 for
ARCMIP. SHEBA
observations are gray shaded
regions; model results are
shown by the individual
curves identified in the key at
the lower left of the upper
panel. [Figure adapted from
Fig. 10(c and d) in M.
Tjernstrom et al. 2005:
Modelling the Arctic
boundary layer: An evaluation
of six ARCMIP regional-scale
models with data from the
SHEBA project. Boundary-
Layer Meteorology, 117,
337–381. Reproduced with
kind permission of Springer
Science and Business Media.]

ARCSYM
COAMPS
HIRHAM
PMMS
RCA
REMO

50

0

–50

–100

–150

–200

–250

A
cc

um
. S

en
s. 

H
ea

t 
Fl

ux
 (

M
J m

–2
)

1 Sep 1 Dec 1 Mar 1 Jun 1 Sep

200

150

100

50

0

–250

A
cc

um
. S

en
s. 

H
ea

t 
Fl

ux
 (

M
J m

–2
)

1 Sep 1 Dec 1 Mar
Date

1 Jun 1 Sep



73

Climate Models: An Assessment of Strengths and Limitations

Figure 5.7.  Annual Cycle
of Southern Hemisphere
Ice Extent. 
It is defined as the area of ice
with concentrations greater
than 15%. Observations are
identified by the black curve
labeled “Obs,” while the results
from individual models are
identified by the six colored
curves. [From Fig. 1 in M.M.
Holland and M.N. Raphael 2006:
Twentieth Century simulations
of the Southern Hemisphere
climate in coupled models. Part
II: Sea ice conditions and
variability. Climate Dynamics, 26,
229–245. Reproduced with kind
permission of Springer Science
and Business Media.]
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5.2.4 Ocean Structure and
Circulation

Unlike the atmosphere, the amount of observa-
tional data available to evaluate ocean simula-
tions is very limited for long time periods.
Nevertheless, sufficient data exist to identify a
set of ocean characteristics or metrics to evalu-
ate ocean models for their climate simulation
properties. The most important is sea-surface
temperature, but other quantities that serve as
good indicators of ocean realism in climate
models are ocean heat uptake, meridional over-
turning and ventilation, sea-level variability, and
global sea-level rise.

5.2.4.1 SEA-SURFACE TEMPERATURE

Sea-surface temperature (SST) plays a critical
role in determining climate and the predictabil-
ity of climate changes. Because of interactions
in atmospheric and ocean circulations at the sur-

face, errors in SSTs typically originate with de-
ficiencies in both atmospheric and ocean model
components. In general, more recent model ver-
sions show improvement over previous models
when simulated SST fields are compared to ob-
servations. Figure 5.9 (Delworth et al. 2006)
shows comparisons of simulated and observed
mean SST fields of both the older GFDL
CM2.0 and newer CM2.1 averaged over a 100-
year period. The new model reduced a cold bias
in the Northern Hemisphere from earlier simu-
lations, resulting in both a more-realistic repre-
sentation of atmospheric wind stress at the
ocean surface and a modified treatment of sub-
grid-scale oceanic mixing. The CCSM3.0
model’s improved SST simulation over
CCSM2.0 results mainly from changes in rep-
resenting processes associated with the mixed
layer of upper ocean waters (Danabasoglu et al.
2006).
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Figure 5.9. Maps of
Simulation Errors in
Annual Mean SST. 
Units are Kelvin (K). Errors
are computed as model
minus observations from
Reynolds SST data
(provided by NOAA-CIRES
Climate Diagnostics Center,
Boulder, Colorado, from
their Web site,
www.cdc.noaa.gov). (a)
CM2.0 (using model years
101 to 200). (b) CM2.1
(using model years 101 to
200). Contour interval is 
1 K, except for no shading
of values between 1 K and
+1 K. [Images from T.L.
Delworth et al. 2006:
GFDL’s CM2 global coupled
climate models. Part 1:
Formulation and simulation
characteristics. J. Climate, 19,
643–684. Reproduced by
permission of the American
Meteorological Society.]
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In addition to SST mean values, 20th Century
trends of SST changes also are significant for
model evaluation, since ocean SST contributes
the dominant signal to the observed global sur-
face temperature trend. An intermodel compar-
ison of 50-year tropical SST trends is shown in
Fig. 5.10. Trends range from a low of 0.1°C/50
yrs to a high of about 0.6°C/50 yrs, with the ob-
servational trend estimate given as about
0.43°C/50 yrs. The figure also shows some ran-
domness within a group of simulations run by
the same model. For example, the two different
GFDL model versions discussed above were
each run for multiple realizations of the 20th

Century. CM 2.0 simulations are noted by
GFDL201, GFDL202, and GFDL203, and CM
2.1 simulations are noted by GFDL211,
GFDL212, and GFDL213.

5.2.4.2 MERIDIONAL OVERTURNING

CIRCULATION AND VENTILATION

The planetary-scale circulation transporting
heat and freshwater throughout global oceans is
referred to as global thermohaline circulation.
The Atlantic portion is called the Atlantic
meridional overturning circulation (AMOC).
Tropical and warm waters flow northward via
the Gulf Stream and North Atlantic Current.
Southward flow occurs when water is subducted
in regions around Labrador and Greenland; sur-
face waters freshen, become denser, and flow
down the slope to deeper depths. Similar
processes occur at locations in the Southern
Ocean. “Ventilation” is the name given to the
process by which these dense surface waters are
carried into the ocean interior. An important cli-
mate parameter is the rate at which this process
occurs. The pattern of circulation may weaken,
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Figure 5.10. Trends
and Standard
Deviations of
Tropical SST
Between 1950 and
1999.
Observations are shown
by the leftmost bar in
each figure. All others are
model results. Error bars
show 95% significance
levels for trends. [Images
from Fig. 9 in D. Zhang and
M.J. McPhaden 2006:
Decadal variability of the
shallow Pacific meridional
overturning circulation:
Relation to tropical sea-
surface temperatures in
observations and climate
change models. Ocean
Modelling, 15, 250–273.
Used with permission
from Elsevier.]
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affecting the climate in the region surrounding
the North Atlantic. Schmittner, Latif, and
Schneider (2005) examined a small ensemble
set of simulations to quantify uncertainty in
model representation of 20th Century AMOC
transports. To make their estimate, they evalu-
ated global temperature, global salinity, pycno-
cline depth, surface temperature, surface
salinity in the Atlantic (SST, SSS), and the over-
turning calculations at three Atlantic locations.
Their results suggest that temperature is simu-
lated most successfully on a large scale and that
the overturning transports at 24°N are close
(~18 Sv) to observed measurements (~15.8 Sv).
However, the maximum mean overturning
transports in these models are too high, between
21.2 and 31.7 Sv, when compared to the ob-
served value (17.7 Sv). Several other CMIP3
models underestimated maximum transport.
The authors do not attempt to explain why mod-
els are different from each other and from ob-
servations.

Another aspect of planetary-scale ocean circu-
lation of interest is transport of mass by the
Antarctic Circumpolar Current through the
Drake Passage. The passage, between the tip of
South America and the Antarctic Peninsula, pro-
vides a constrained passage to measure the flow
between two large ocean basins. Observed mean
transport is around 135 Sv (Cunningham et al.
2003). Russell, Stouffer, and Dixon (2006,
2007) estimate passage flow for a subset of cli-
mate models. Simulated mean values show a
wide range. For example, GFDL and GISS-EH
models do fairly well in reproducing the ob-
served average transport with values between
113 and 175 Sv. Once again, the interaction be-
tween the atmospheric and ocean component
models appears to be important in reproducing
the observed transport. The strength and loca-
tion of the zonal wind stress provided by the at-
mosphere correlate with how well the transport
reflects observed values.

5.2.4.3 NORTHWARD HEAT TRANSPORT

A common metric used to quantify the realism
in ocean models is the northward transport of
heat. This integrated quantity (from top to bot-
tom and across latitude bands) gives an estimate
of how heat moves within the ocean and is im-
portant in balancing the overall heat exchange
between the tropics and the extratropical regions

of the Earth. The calculations for the ocean’s
northward heat transport in the current genera-
tion of climate models show that the models
reasonably represent the observations (Delworth
et al. 2006; Collins et al. 2006a; Schmidt et al.
2006). The current models have significantly
improved over the last generation in the North-
ern Hemisphere. Comparisons of simulated val-
ues to observed values for the North Atlantic are
within the uncertainty of the observations. In
the Southern Hemisphere, the comparisons in
all the models are not as good, with the Indian
Ocean transport estimates contributing to a sig-
nificant part of the mismatch. In coupled ocean-
atmosphere simulations, erroneous ocean heat
transport is compensated by changes in atmos-
pheric heat transport that give a more realistic
total heat transport (Covey and Thompson
1989).

Heat Content. The global mean mass-weighted
ocean temperature is called the ocean’s heat
content. Its time evolution is centrally important
in determining how realistically the models re-
produce heat uptake. The seasonal cycle and
longer-term trends of heat content provide use-
ful model metrics, although the seasonal cycle
does not affect the deep ocean. An evaluation of
temporally evolving ocean-heat content in the
CMIP3 suite of climate models shows the mod-
els’ abilities to simulate the zonally integrated
annual and semiannual cycle in heat content. In
the middle latitudes (Gleckler, Sperber, and
AchutaRao 2006), the models do a reasonable
job, although a broad spread of values is appar-
ent for tropical and polar regions. This analysis
showed that the models replicate the annual
cycle’s dominant amplitude along with its phas-
ing in the midlatitudes (Figs. 5.11 a–b and 5.12
a–f). At high latitudes, comparisons with obser-
vations are not as consistent. Although the an-
nual cycle and global trend are reproduced,
model analyses (e.g., Hansen et al. 2005a, b)
show they do not simulate decadal changes in
estimates made from observations (Levitus et
al. 2001). Part of the difficulty of comparisons
at high latitudes and long periods is the paucity
of observational data (Gregory et al. 2004).
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Figure 5.11a–b.
Observed and
Simulated Zonally
Integrated Ocean
Heat Content 
(0–250 m).
Observations are
represented by the curve
labeled “WOA04.” All
other curves are model
results. (a) annual cycle
amplitude (108 J/m2) and
(b) semiannual/annual
(A2/A1). [From Fig. 1 in P.J.
Gleckler, K.R. Sperber, and
K. AchutaRao 2006: Annual
cycle of global ocean heat
content: Observed and
simulated. J. Geophysical
Research, 111, C06008.
Reproduced by
permission of the
American Geophysical
Union (AGU).] 
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Figure 5.12a–f. Annual Cycle of Observed and Simulated Basin Average Global Ocean Heat Content (0–250 m). 
Observations are represented by the curves labeled “WOA01” and “WOA04.” Units are 1022 J. Arctic Ocean is defined as north of 60°N,
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5.2.5 Global Mean Sea-Level Rise

Two separate physical processes contribute to
sea-level rising: (1) ocean thermal expansion
from an increase in ocean heat uptake (steric
component) and (2) addition of freshwater from
precipitation, continental ice melt, and river
runoff (eustatic component). Various ocean
models handle freshwater fluxes in different
ways. With the addition of a free surface in the
current generation of ocean models, freshwater
flux into oceans can be included directly
(Griffies et al. 2001). The freshwater contribu-
tion is computed in quantities estimated by the
climate model’s atmosphere and ice-sheet com-
ponents (e.g., Church, White, and Arblaster
2005; Gregory, Lowe, and Tett 2006). In gen-
eral, state-of-the-art climate models underesti-
mate the combined global mean sea-level rise
as compared to tide gauge and satellite altime-
ter estimates, while the rise for each separate
component is within the observed values’ un-
certainty. The reason for this is an open research
question and may relate either to observational
sampling or to incorrectly accounting for all eu-
static contributions. The steric component to
global mean sea-level rise is estimated at 0.40 ±
0.05 mm/yr from observations (Antonov, Levi-
tus, and Boyer 2005). Models simulate a similar
but somewhat smaller rise (Gregory, Lowe, and
Tett 2006; Meehl et al. 2005). Significant dif-
ferences also occur in the magnitudes of
decadal variability between observed and simu-
lated sea level. Progress is being made, however,
over the previous generation of climate models.
When atmospheric effects from volcanic erup-
tions are included, for example, current-gener-
ation ocean models capture the volcanoes’
observed impact (a decrease in the global mean
sea level). Figure 5.13 from Church, White, and
Arblaster (2005) gives an example of a few
models and their detrended estimate of the his-
toric global mean sea level. It shows the influ-
ence of including additional atmospheric
forcing agents in changing the ocean’s steric
height.

5.3 EXTREME EVENTS

Flood-producing precipitation, drought, heat
waves, and cold waves have severe impacts on
North America. Flooding resulted in average
annual losses of $3.7 billion between 1983 and

2003 (www.flooddamagedata.org). Losses from
the 1988 drought were estimated at $40 billion
and the 2002 drought at $11 billion. Heat waves
in 1995 resulted in 739 additional deaths in
Chicago alone (Whitman et al. 1997). A large
component of overall climate change impacts
probably will arise from changes in the inten-
sity and frequency of extreme events.

Modeling of extreme events poses special chal-
lenges since they are, by definition, rare. Al-
though the intensity and frequency of extreme
events are modulated by ocean and land surface
state and by trends in the mean climate state, in-
ternal atmospheric variability plays a very large
role, and the most extreme events arise from
chance confluence of unlikely conditions. The
very rarity of extreme events makes statistical
evaluation of model performance less robust
than for mean climate. For example, in evaluat-
ing a model’s ability to simulate heat waves as
intense as that in 1995, only a few episodes in
the entire 20th Century approach or exceed that
intensity (Kunkel et al. 1996). For such rare
events, estimates of the real risk are highly un-
certain, varying from once every 30 years to
once every 100 years or more. Thus, a model
that simulates these occurrences at a frequency
of once every 30 years may be performing ade-
quately, but its performance cannot be distin-
guished from that of the model that simulates a
frequency of once every 100 years.

Although it might be expected that a change in
mean climate conditions will apply equally to
changes in extremes, this is not necessarily the
case. Using as an example the 50-state record-
low temperatures, the decade with the largest
number of records is the 1930s, yet winters dur-
ing that decade averaged third warmest since
1890; in fact, no significant correlation is
shown between the number of records and U.S.
wintertime temperature (Vavrus et al. 2006).
Thus, the severest cold air outbreaks in the past
do not necessarily coincide with cold winters.
Another examination of model data showed that
future changes in extreme temperatures differ
from changes in mean temperature in many re-
gions (Hegerl et al. 2004). This means that cli-
mate model output must be analyzed explicitly
for extremes by examining daily (or even finer–
resolution) data, a resource-intensive effort.
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Figure 5.13. Observed and Modeled Global Ocean Heat Content (GOHC) and Global Mean Sea Level (GMSL)
for 1960 to 2000. 
The response to volcanic forcing, as indicated by differences between pairs of PCM simulations for GOHC (a) and GMSL (b) is shown for
the ensemble mean (bold line) and the three ensemble members (light lines). Observational estimates of GOHC and GMSL are shown by
the black and blue bold lines. For a and b, all results are for the upper 300 m only and have been detrended over the period 1960 to 2000.
For c, the ensemble mean (full-depth) GMSL for GISS-ER, MIROC3.2(hires), MIROC3.2(medres), and PCM models (after subtracting a
quadratic) are shown. [From Fig. 2 in J.A. Church, N.J. White, and M. Arblaster 2005: Significant decadal-scale impact volcanic eruptions on
sea level and ocean heat content. Nature, 438(7064), 74–77. Used with permission from Nature Publishing Group.] 
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Evaluation of model performance with respect
to extremes is hampered by incomplete data on
historical frequency and severity of extremes.
Frich et al. (2002) analyzed ten indicators of cli-
mate extremes and presented global results.
However, many areas were missing due to lack
of suitable station data, particularly in the trop-
ics. Using some of these indices for compar-
isons between models and observations has
become common. Another challenge for model
evaluation is the spatially averaged nature of
model data, representing an entire grid cell,
while station data represent point observations.
For some comparisons, averaging station data
over areas representing a grid cell is necessary.

Several approaches are used to evaluate model
performance for simulation of extremes. One
approach examines whether a model reproduces
the magnitude of extremes. For example, a daily
rainfall amount of 100 mm or more is expected
to occur about once every year in Miami, every
6 years in New York City, every 13 years in
Chicago, and every 200 years in Phoenix. A
useful metric would be the extent to which a
model is able to reproduce absolute magnitudes
and spatial variations of such extremes. A sec-
ond approach examines whether a model repro-
duces observed trends in extremes. Perhaps the
most prominent observed global trend is an in-
crease in the frequency of heavy precipitation,
particularly during the last 20 to 30 years of the
20th Century. This trend is significant at the 95%
confidence level for the period 1979 to 2003
and at the 99% confidence level for the period
1951 to 2003 (Trenberth et al. 2007). Another
notable observed trend is an increase in the
length of the frost-free season.

In some key respects, model simulation of tem-
perature extremes probably is less challenging
than simulating precipitation extremes, in large
part due to the scales of these phenomena. The
typical heat wave or cold wave covers a rela-
tively large region, on the order of several hun-
dred miles or more or a number of grid cells in
a modern climate model. By contrast, heavy
precipitation can be much more localized, often
extending over regions of much less than 150
km, or less than the size of a grid cell. Thus, the
modern climate model can simulate directly the
major processes causing temperature extremes
while heavy precipitation is sensitive to para-

meterization of subgrid-scale processes, partic-
ularly convection (Chapter 2; Emori and Brown
2005; Iorio et al. 2004).

5.3.1 DROUGHTS AND EXCESSIVE RAINFALL

LEADING TO FLOODS

Recent analysis indicates a globally averaged
trend toward greater areal coverage of drought
since 1972 (Dai et al. 2004). A simulation by
the HadCM3 model reproduces this dry trend
(Burke, Brown, and Christidis 2006) only if an-
thropogenic forcing is included. A control sim-
ulation indicates that the observed drying trend
is outside the range of natural variability. The
model, however, does not always correctly sim-
ulate the regional distributions of areas of in-
creasing wetness and dryness. The relationship
between droughts and variability was covered
above in Section 5.2.2.3 Monsoons.

Several different measures of excessive rainfall
have been used in analyses of model simula-
tions. A common one is the annual maximum
5-day precipitation amount, one of the Frich et
al. (2002) indices. This has been analyzed in
several recent studies (Kiktev et al. 2003;
Hegerl et al. 2004; Tebaldi et al. 2006). Other
analyses have examined thresholds of daily pre-
cipitation, either absolute (e.g., 50 mm/day in
Dai 2006) or percentile (e.g., 4th-largest precip-
itation event equivalent to 99th percentile of 365
daily values as in Emori et al. 2005). Recent
studies of model simulations produced for
CMIP3 provide information on the performance
of the latest model generation.

Models generally tend to underestimate very
heavy precipitation. This is shown in a compar-
ison between satellite (TRMM) estimates of
daily precipitation and model-simulated values
within the 50°S–50°N latitude belt (Dai 2006).
TRMM observations derive 7% of total precip-
itation from very heavy rainfall of 50 mm or
more per day, in contrast to only 0 to 2% for the
models. For the frequency of very heavy pre-
cipitation of 50 mm or more per day, TRMM
data show a frequency of 0.35% (about once
every 300 days), whereas it is 0.02 to 0.11%
(once every 900 to 5000 days) for the models. A
global analysis of model simulations showed
that models produced too little precipitation in
events exceeding 10 mm/day (Sun et al. 2006).
Examining how many days it takes to accumu-
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late two-thirds of annual precipitation, models
generally show too many days compared to ob-
servations over North America, although a few
models are close to reality. In contrast to the
general finding of a tendency toward underesti-
mation, a study (Hegerl et al. 2004) of two mod-
els indicates generally good agreement with
observed annual maximum 5-day precipitation
amounts over North America for HadCM3 and
even somewhat of an overestimation for
CGCM2.

This model tendency to produce rainfall events
less intense than observed appears to be due in
part to global models’ low spatial resolution.
Experiments with individual models show that
increasing resolution improves the simulation
of heavy events. For example, the fourth-largest
precipitation event in a model simulation with a
resolution of about 300 km averaged 40 mm
over the conterminous United States, compared
to an observed value of about 80 mm. When the
resolution was increased to 75 km and 50 km,
the fourth-largest event was still smaller than
observed but by a much smaller amount (Iorio
et al. 2004). A second important factor is the pa-
rameterization of convection. Thunderstorms
are responsible for many intense events, but
their scale is smaller than the size of model
grids and thus must be indirectly represented in
models (Chapter 2). One experiment showed
that changes to this representation improve
model performance and, when combined with
high resolution of about 1.1° latitude, can pro-
duce quite-accurate simulations of the fourth-
largest precipitation event on a globally
averaged basis (Emori et al. 2005). Another ex-
periment found that the use of a cloud-resolv-
ing model imbedded in a global model
eliminated underestimation of heavy events
(Iorio et al. 2004). A cloud-resolving model
eliminates the need for convection parameteri-
zation but is very expensive to run. These sets of
experiments indicate that the problem of heavy-
event underestimation may be reduced signifi-
cantly in future as increases in computer power
allow simulations at higher spatial resolution
and perhaps eventually the use of cloud-resolv-
ing models.

Improved model performance at higher spatial
resolutions provides motivation for use of re-
gional climate models when only a limited area,

such as North America, is of interest. These
models have spatial resolution sufficient to re-
solve major mountain chains, and some thus
display considerable skill in areas where topog-
raphy plays a major role in spatial patterns. For
example, they are able to reproduce rather well
the spatial distribution of the magnitude or ex-
tent of precipitation in the 95th percentile (Leung
and Qian 2003), frequency of days with more
than 50 mm and 100 mm (Kim and Lee 2003),
frequency of days over 25 mm (Bell, Sloan, and
Snyder 2004), and annual maximum daily pre-
cipitation amount (Bell, Sloan, and Snyder
2004) over the western United States. Kunkel et
al. (2002) found that an RCM’s simulation of
extreme-event magnitude over the United States
varied spatially and depended on event duration.
There was a tendency for overestimation in
western United States and good agreement or
underestimation in central and eastern United
States.

Most studies of observed precipitation extremes
suggest that they have increased in frequency
and intensity during the latter half of the 20th

Century. A study by Tebaldi et al. (2006) indi-
cates that models generally simulate a trend to-
ward a world characterized by intensified
precipitation, with a greater frequency of heavy-
precipitation and high-quantile events, although
with substantial geographical variability. This is
in agreement with observations. Wang and Lau
(2006) find that CGCMs simulate an increasing
trend in heavy rain over the tropical ocean.

5.3.2 Heat and Cold Waves

Analyses of simulations for IPCC AR4 by seven
climate models indicate that they reproduce the
primary features of cold air outbreaks (CAOs),
with respect to location and magnitude (Vavrus
et al. 2006). In the analyses, a CAO is an
episode of at least 2 days duration during which
the daily mean winter (December-January-
February) surface temperature at a gridpoint is
two standard deviations below the gridpoint’s
winter mean temperature. Maximum frequen-
cies of about four CAO days per winter are sim-
ulated over western North America and Europe,
while minimal occurrences of less than one day
per winter exist over the Arctic, northern Africa,
and parts of the North Pacific. GCMs generally
are accurate in their simulation of primary fea-
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tures, with high pattern correlation to observa-
tions and maximum number of days meeting
CAO criteria around 4 per winter. One favored
region for CAOs is in western North America,
extending from southern Alaska into the upper
Midwest. Here, models simulate a frequency of
about 4 CAO days per year, in general agree-
ment with the observed values of 3 to 4 days.
Models underestimate frequency in the south-
eastern United States (mean simulated values
range from 0.5 to 2 days vs 2 to 2.5 days in ob-
servations). This regional bias occurs in all
models and reflects the inability of GCMs to
penetrate Arctic air masses far enough south-
eastward over North America.

CMIP3 model simulations show a positive trend
for growing season, heat waves, and warm
nights and a negative trend for frost days and
daily temperature range (maximum minus min-
imum) (Tebaldi et al. 2006). The simulations in-
dicate that this is in general agreement with
observations, except that there is no observed
trend in heat waves. The modeled spatial pat-
terns generally have larger positive trends in
western North America than in eastern sections.
For the United States, this is in qualitative
agreement with observations showing that de-
creases in frost-free season and frost days are
largest in the western United States (Kunkel et
al. 2004; Easterling 2002).

Analysis of individual models provides a more
detailed picture of model performance. In a sim-
ulation from PCM (Meehl, Tebaldi, and Nychka
2004), the largest trends for decreasing frost
days occur in the western and southwestern
United States (values greater than –2 days per
decade). Trends near zero in the upper Midwest
and northeastern United States show good
agreement with observations. The biggest dis-
crepancy between model and observations is
over parts of the southeastern United States,
where the model shows trends for decreasing
frost days and observations show slight in-
creases. This is thought to be a partial conse-
quence of two large El Niño events in
observations during this time period (1982–
1983 and 1997–1998) when anomalously cool
and wet conditions occurred over the southeast-
ern United States and contributed to slight in-
creases of frost days. The model’s ensemble
mean averages out effects from individual El

Niño events, and thus frost-day trends reflect a
more general response to forcings that occurred
during the latter part of the 20th Century. An
analysis of short-duration heat waves simulated
by PCM (Meehl and Tebaldi 2004) indicates
good agreement with observed heat waves for
North America. In that study, heat waves were
defined by daily minimum temperature. The
most intense events occurred in the southeastern
United States for both model simulation and ob-
servations. The overall spatial pattern of heat-
wave intensity in the model matched closely
with the observed pattern. In a four-member en-
semble of simulations from HadCM3 (Chris-
tidis et al. 2005), the model showed a rather
uniform pattern of increases in the warmest
night for 1950 to 1999. Observations also show
a global mean increase, but with considerable
regional variations. In North America, observed
trends in the warmest night vary from negative
in the south-central sections to strongly positive
in Alaska and western Canada, compared to a
rather uniform pattern in the model. However,
this discrepancy might be expected, since the
observations probably reflect a strong imprint
of internal climate variability that is reduced by
ensemble averaging of the model simulations.

Analysis of the magnitude of temperature ex-
tremes for California in a regional climate
model simulation (Bell, Sloan, and Snyder
2004) shows mixed results. The hottest maxi-
mum in the model is 4°C less than observations,
while the coldest minimum is 2.3°C warmer.
The number of days >32°C is 44 in the model
compared to an observed value of 71. This
could result from the lower diurnal temperature
range in the model (15.4°C observed vs 9.7°C
simulated). While these results are better than
the driving GCM, RCM results are still some-
what deficient, perhaps reflecting the study re-
gion’s very complex topography.

Models display some capability to simulate ex-
treme temperature and precipitation events, but
there are differences from observed character-
istics. Models typically produce global in-
creases in extreme precipitation and severe
drought and decreases in extreme minimum
temperatures and frost days, in general agree-
ment with observations. Models have a general,
though not universal, tendency to underestimate
the magnitude of heavy precipitation events.
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Regional-trend features are not always captured.
Since the causes of observed regional-trend
variations are not known in general and such
trends could be due in part to the climate sys-
tem’s stochastic variability, assessing the sig-
nificance of these discrepancies is difficult.
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Climate models are evolving toward greater comprehensiveness, incorporating such aspects of the

chemical and biological environment as active vegetation on land and oceanic biogeochemistry that

affect and are affected by the physical climate. Climate models are simultaneously evolving to-

ward finer spatial resolution.

Improvements in climate simulations as resolution increases can be both incremental and funda-

mental. Incremental improvements are expected in treatment of the atmosphere due to better

simulation of atmospheric fronts, interactions among extratropical storms and sharp topographic

features, and, especially, tropical storms. In the ocean, finer resolution incrementally improves the

simulation of narrow boundary currents and the circulation in relatively small basins, such as the

Labrador Sea, that play key roles in oceanic circulation.

More fundamental changes also happen in both the atmosphere and the ocean as resolution im-

proves. In the ocean a key transition occurs at grid scales of tens of kilometers, at which point

mesoscale eddies (see Chapter 2) begin to be explicitly resolved. In the atmosphere, a funda-

mental transition takes place when the grid scale drops to a few kilometers, where direct simu-

lation of dominant deep convective circulations begins to be feasible and the model’s dependence

on uncertain subgrid-scale parameterization of deep moist convection diminishes.

In the following, we discuss these more funda-
mental oceanic and atmospheric transitions and
then describe some examples of increased com-
prehensiveness in climate modeling (see also
Chapter 2 for glacial modeling, another impor-
tant future development).

The climate modeling enterprise is evolving
along additional paths (apart from evolution of
the models themselves) that are not discussed
here. One path is the creation of large ensem-
bles of model simulations by varying uncertain

physical parameters so as to better estimate the
associated uncertainties [quantifying uncer-
tainty in model predictions (called QUMP);
Murphy et al. 2004; climateprediction.net]. Oth-
ers include the movement toward initializing cli-
mate models with estimates of observed
climatic states, particularly the observed
oceanic state, so as to optimize the realism of
decadal forecasts, which marks an evolution to-
ward the merging of seasonal-interannual and
decadal forecasting (Troccoli and Palmer 2007).
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6.1 HIGH-RESOLUTION MODELS

6.1.1 Mesoscale Eddy-Resolving
Ocean Models

The distinction between laminar and turbulent
flow in the ocean is fundamental. Simulations
of the more realistic turbulent regime promise
to substantially raise the level of realism in
oceanic climate simulations. For example, Fig.
6.1 shows two simulations of the Southern
Ocean by an ocean model developed at the Geo-
physical Fluid Dynamics Laboratory (GFDL)
(Hallberg and Gnanadesikan 2006). The field
shown is an instantaneous snapshot of the sur-
face current speed. Resolution of the model on
the left is about 1° latitude. The result is a rela-
tively laminar (nonturbulent) flow with a gen-
tly meandering circumpolar current. The figure
on the right is obtained by reducing the grid size

to 1/6 of a degree. A much more turbulent flow
is simulated by the model with abundant vortex
generation. This model is beginning to resolve
the spectrum of mesoscale eddies that populate
the Southern Ocean and many other oceanic re-
gions. As discussed in Chapter 2, the effects on
ocean circulation of mesoscale eddy-induced
mixing are parameterized in current ocean mod-
els, which can be thought of as essentially lam-
inar.

While progress has been made in recent years,
explicit simulation of these eddies undoubtedly
is more reliable than mixing parameterizations.
In the Southern Ocean, eddies are thought to
control the circumpolar current’s response to
wind changes (Hallberg and Gnanadesikam
2006) and the way carbon dioxide is taken up
by the Southern Ocean.

Figure 6.1. Surface-Current Speed in Two Simulations of the Southern Ocean in Low-
and High-Resolution Ocean Models. 
[From Fig. 6 in R. Hallberg and A. Gnanadesikam 2006: The role of eddies in determining the structure and
response of the wind-driven Southern Hemisphere overturning: Results from the modeling eddies in the
Southern Ocean (MESO) project. J. Physical Oceanography, 36, 2232–2252. Reproduced by permission of
the American Meteorological Society (AMS).]



Global mesoscale eddy-resolving ocean models
are beginning to be examined in various mod-
eling centers in the United States and around the
world, even though exploiting such models will
require substantial increases in computational
resources. Challenges that may arise when these
models are integrated for long time periods in-
clude maintaining realistically small amounts of
mixing across constant-density surfaces in the
more turbulent flows to avoid distortion of
much slower thermohaline circulations.

As noted in Chapter 5, models provide esti-
mates of the climate system’s centennial-scale
variability that underlies attribution studies of
climatic trends. Seeing if eddy-resolving
OGCMs increase the variability level on long
time scales in climate models will be of great
interest.

6.1.2 Cloud-Resolved Atmospheric
Models

As atmospheric models attain higher resolution
and more detailed representation of physical
processes, short-range weather prediction and
longer-range climate prediction become more
synergistic (Phillips et al. 2004). This is partic-
ularly evident in “cloud-resolving models”
(CRMs) with spatial resolutions of less than a
few kilometers. CRMs can explicitly simulate
atmospheric systems that exist on scales much
smaller than the grid resolution of conventional
atmospheric general circulation models
(AGCMs) (Randall et al. 2003; Khairoutdinov,
Randall, and DeMott 2005). These systems in-
clude mesoscale organizations in squall lines,
deep updrafts and downdrafts, and cirrus anvils.
CRMs also allow calculation of cloud proper-
ties and amounts based on more realistic small-
scale structure in the flow field. The desired
result is not only better simulations of regional
climates, especially in the tropics, but also more
reliable estimates of cloud feedbacks and cli-
mate sensitivity.

CRMs are variations of models designed for
mesoscale storm and cumulus convection sim-
ulations. At CRM grid scales, hydrostatic bal-
ance is no longer universally valid. CRMs are
therefore formulated with nonhydrostatic equa-
tions in which vertical accelerations are calcu-
lated explicitly (Tripoli 1992).

Like AGCMs, CRMs must employ empirical
parameterizations to calculate the impact of
subgrid scale processes, but CRMs explicitly
represent a larger portion of the size spectrum
of meteorological systems, so the parameteri-
zations’ impact on large-scale circulation and
climate may be less severe. Most important, cu-
mulus parameterizations for deep tropical con-
vection are not needed in CRMs. CRMs can
accommodate more realistic microphysical
processes, including those by which aerosols
nucleate cloud drops, allowing more convinc-
ing treatment of aerosol and cloud interactions
involved in indirect aerosol radiative forcing.

However, shallow nonprecipitating convection
(which produces fair-weather cumulus clouds)
is dominated by flows on scales less than 1 km
and will probably still require subgrid-scale pa-
rameterization in foreseeable global CRMs.
Cloud feedbacks in regions of shallow convec-
tion are an important source of disparity in cli-
mate sensitivity in CMIP3 models (Bony et al.
2006). Furthermore, most cloud microphysical
processes take place on CRM subgrid scales
and so must be parameterized. Thus, uncertainty
in cloud feedbacks will not disappear when
global CRMs begin to play a role in climate as-
sessments, but modelers hope that uncertainty
will be reduced substantially.

Global models with CRM resolution have been
attempted to date only at the Japanese Earth
Simulator, but, with continued increase in com-
puter power, global CRMs are expected to be-
come centrally important in climate (as well as
weather) research. Nevertheless, as noted above,
major uncertainties in cloud microphysics will
remain, especially in the prediction of ice-parti-
cle concentrations, fall speed of cloud particles,
hydrometeorological spectra evolution, and en-
trainment rates into convective plumes (Cotton
2003). At CRM resolutions, more sophisticated
algorithms of radiative-transfer calculation than
those in current GCMs may be required because
the plane parallel assumption for convergence of
radiant energy may not be valid. Validation of
CRMs probably will continue to take place in re-
gional models and short-range forecasts, fol-
lowed by their incorporation into global models.

Several observational programs such as the
DOE Atmospheric Radiation Measurement
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(ARM) Program have collected data essential to
evaluate CRMs (M.H. Zhang et al. 2001; Tao et
al. 2004). Results from such programs will facil-
itate improvement of CRM subgrid-scale
physics. Extensive parameter-sensitivity tests
with global models will still be needed to reduce
uncertainties in microphysics and the treatment
of shallow convection for climate sensitivity and
regional climate-change simulation.

6.2 BIOGEOCHEMISTRY AND
CLIMATE MODELS

6.2.1 Carbon Cycle

The physical climate system and biogeochemi-
cal processes are tightly coupled. Changes in
climate affect the exchange of atmospheric CO2

between land surface and ocean, and changes in
CO2 fluxes affect Earth’s radiative forcing and
thus the physical climate system. Some recently
developed atmosphere-ocean general circula-
tion models (AOGCMs) include the carbon
cycle and have confirmed the potential for
strong feedback between it and global climate
(Cox et al. 2000; Friedlingstein et al. 2001;
Govindasamy et al. 2005). The next generation of
AOGCMs may include the carbon cycle as well as
interactive atmospheric aerosols and chemistry.
Models that include the carbon cycle are able to
predict time-evolving atmospheric CO2 concen-
trations using, as input, anthropogenic emissions
rather than assumed concentrations.

Simulation of the global carbon cycle must ac-
count for the processes shown in Fig. 6.2. As the
figure shows, the present-day global carbon cycle
is not in equilibrium because of fossil-fuel burn-
ing and other anthropogenic carbon emissions.
These carbon sources must, of course, be in-
cluded in models of climate change. Such a cal-
culation is not easy because human-induced
changes to the carbon cycle are small compared to
large natural fluxes, as shown in the figure. In ad-
dition, although the globally and annually aver-
aged carbon reservoirs and fluxes shown in the
figure are consistent with estimates from a variety
of sources, substantial uncertainties are attached
to the numbers (e.g., often a factor >2 uncertainty
for fluxes; see Prentice et al. 2001). Additional
uncertainty applies to regional, seasonal, and in-
terannual variations in the carbon cycle.

Feedbacks between the physical climate system
and the carbon cycle are represented plausibly
but with substantial differences in various
AOGCM carbon-cycle models. Cox et al.
(2000) obtained a very large positive feedback,
with global warming reducing the fraction of
anthropogenic carbon absorbed by the bios-
phere, thus boosting the model’s simulated at-
mospheric CO2. Friedlingstein et al. (2001)
obtained much weaker feedback. Thompson et
al. (2004) demonstrated that making different
assumptions about the land biosphere within a
single model gave markedly different feedback
values. Using the same model, Govindasamy et
al. (2005) noted a positive correlation between
the magnitude of carbon-cycle feedback and the
sensitivity of the physical climate system.

A recent study examined carbon-cycle feed-
backs in 11 coupled AOGCM carbon-cycle
models using the same forcing (Friedlingstein
et al. 2006). The models unanimously agreed
that global warming will reduce the fraction of
anthropogenic carbon absorbed by the bios-
phere—a positive feedback—but the magnitude
of this feedback varied widely among models
(Fig. 6.3). When models included an interactive
carbon cycle, predictions of the additional
global warming due to carbon-cycle feedback
ranged between 0.1 and 1.5°C. Eight models at-
tributed most of the feedback to the land bios-
phere, while three attributed it to the ocean.

These results demonstrate the large sensitivity
of climate model output to assumptions about
carbon-cycle processes. Future carbon-cycle
models, coupled to physical climate models and
constrained by new global remote-sensing
datasets and in situ measurements, may allow
more definitive projection of CO2 concentra-
tions in the atmosphere for given emission sce-
narios. CCSP SAP 2.2 contains more
information on the carbon cycle and climate
change (CCSP 2007).

6.2.2 Other Biogeochemical Issues

Methane (CH4) is a potent greenhouse gas
whose atmospheric concentration is controlled
by its emission rate and the atmosphere’s oxida-
tive capacity (especially hydroxyl radical con-
centration). Methane concentrations are now
much higher than in preindustrial times but have
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not increased in the past decade, for reasons that
continue to be debated. Whether or not this trend
carries into the future has substantial implications
for radiative forcing. To resolve this question,
AOGCMs would need to include atmospheric
chemistry models incorporating a number of dif-
ferent trace gases and reaction rates.

Another emerging issue is the interactive evo-
lution of climate with the storage of water and

carbon by plants. To address this process, dy-
namic vegetation models (in which plant growth
is calculated rather than specified a priori) are
under development at modeling centers in the
United States and elsewhere. This inclusion of a
wider range of processes poses challenges [e.g.,
it amplifies errors in rainfall prediction (Bonan
and Levis 2006)]. In addition, ecosystems fer-
tilized with CO2 are limited by the availability
of nutrients such as nitrogen and phosphorous

Figure 6.2. Global
Carbon Cycle from 
the Point of  View of
Existing Physical
Climate System
Models (Coupled
AOGCMs). 
The four boxes represent
atmosphere, land surface,
ocean, and sea ice—major
components of AOGCMs.
Earth system models will
evolve from AOGCMs by
incorporating relevant
biogeochemical cycles into
the four-box framework
(with sea ice not acting as a
carbon reservoir). Numbers
shown are average values for
the 1990s. Small (≤1
PgC/year) fluxes such as
those involving methane are
not shown, except for burial
of 0.2 PgC/year in ocean-
bottom sediments, assuming
a 50-50 split between plant
and microbial respiration.  
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from 11 Different
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that are important to the carbon cycle (Field,
Jackson, and Mooney 1995; Schimel 1998;
Nadelhoffer et al. 1999; Shaw et al. 2002; Hun-
gate et al. 2003). Future climate-carbon models
probably will need to include these nutrients.
The few models that do so now show less plant
growth in response to increasing atmospheric
CO2 (Cramer et al. 2001; Oren et al. 2001;
Nowak, Ellsworth, and Smith 2004). Incorpo-
ration of other known limiting factors such as
acclimation of soil microbiology to higher tem-
peratures (Kirschbaum 2000; Tjoelker, Oleksyn,
and Reich 2001) will be important in develop-
ing comprehensive Earth system models.
Aerosol modeling also will be a central element
in future models (this subject will be covered by
CCSP SAP 2.3, whose estimated publication
date is June 2008).

Often, climate-carbon simulations include nat-
ural ecosystems but do not include the effects
of human land-cover and land-management
changes (e.g., deforestation and reforestation).
Land-cover change often is accounted for sim-
ply by prescribing estimates for the historical
period (e.g., Houghton 2003) and for future sce-
narios from the IPCC Special Report on Emis-
sions Scenarios (IPCC 2000). These estimates
do not include practices such as crop irrigation
and fertilization. Many models with “dynamic
vegetation” do not actually simulate crops; they
only allow natural vegetation to grow. Defor-
estation, land cultivation, and related human ac-
tivities probably will be included in at least
some future AOGCMs, enabling more complete
assessment of total anthropogenic effects on the
global climate and environment (Ramankutty et
al. 2002; Root and Schneider 1993).

6.2.3 Ocean Biogeochemistry

Climate change impacts on the marine environ-
ment—including changes in the ocean’s biota
and carbon content due to modified ocean tem-
perature, salinity, and circulation patterns—
must be accounted for, along with terrestrial
biogeochemistry, in a complete Earth system
model. Implementation of ocean biogeochem-
istry processes into AOGCMs is under way 
to improve simulation of the ocean carbon 
cycle under various scenarios [e.g., “CCSM
Biogeochemistry Working Group Meeting 
Report,” March 2006 (www.ccsm.ucar.edu/ 

working_groups/Biogeo/reports/060328_BGC
WGrpt.pdf); GFDL’s Earth system model
(gfdl.noaa.gov/~jpd/ esmdt.html); Doney et al.
2004]. One issue receiving particular attention
in recent years is that ocean productivity may
be increased through iron fertilization via dust
particles, potentially reducing atmospheric CO2

(Martin 1991). This effect is being assessed by
both observational programs (e.g., Bishop,
Davis, and Sherman 2002) and climate-carbon
models (Jickells et al. 2005).

An important challenge to these efforts is the
complexity of ocean ecosystems. Adding to this
complexity are organisms that fix nitrogen and
denitrify, calcify, or silicify; accounting for each
adds parameterizations and variables to the sys-
tem (Hood et al. 2006). Biological models need
to be sufficiently complex to capture the ob-
served variability on various time scales, since
this variability provides essential tests for the
models. As in many aspects of climate model-
ing, however, complexity that outgrows the abil-
ity to constrain models with available data
should be avoided (Hood et al. 2006).

Modeling groups have undertaken systematic
comparison of different models in the Ocean
Carbon Cycle Model Intercomparison Project
(OCMIP) under the auspices of the Interna-
tional Geosphere-Biosphere Programme.
OCMIP’s most recent phase involved 13
groups—including several from the United
States—implementing a common biological
model in their different OGCMs (Najjar et al.
2007). The common biological model includes
five prognostic variables: inorganic phosphate
(PO4

2–), dissolved organic phosphorus (DOP),
dissolved oxygen (O2), dissolved inorganic car-
bon (CO2 + HCO3

– + CO3
2–), and total alkalin-

ity (the system’s acid- and base-buffering
capacity). Model intercomparison revealed sig-
nificant differences in simulated biogeochemi-
cal fluxes and reservoirs. A biogeochemistry
model’s realism was found to be tied closely to
the dynamics of the simulation’s ocean circula-
tion. Just as for land vegetation modeling, a se-
rious challenge to climate models is presented
by the quality of the physical climate simulation
required for realistic biogeochemical modeling.
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In this chapter we present several cases where climate model simulation results were used for

studies involving actual and potential end-user applications. With the increased availability of cli-

mate model simulation output through the CMIP3 multimodel archive, impacts and applications

users are rapidly applying the model results for their needs. Just as quickly, the breadth and diversity

of applications will continue to grow in the future as climate statistics are no longer considered

stationary. The examples discussed in this chapter are meant for illustration and do not constitute

a complete accounting of all published instances of applications from model results. The influence

of climate, and therefore climate change, on different natural and societal systems is quite varied.

Some impacts of climate change result primarily from changes in mean conditions. Other impacts

are sensitive to climate variability—the sequence, frequency, and intensity of specific weather

events. Note that the climate simulations described below are not offering predictions of 21st

Century climate but simply projections of possible climate scenarios. Prediction requires know-

ing in advance how climatic forcings, including those produced by humans, would change in the fu-

ture. SAP 3.2 examines climate projections by CMIP3 models in greater detail.

7.1 APPLYING MODEL RESULTS
TO IMPACTS

As shown in previous chapters, climate models
give approximate renditions of real climate.
Consequently, applications of climate model re-
sults to impact studies require consideration of
several limitations that characterize model out-
put. In principle, using the direct output of cli-
mate models is desirable because these results
represent a physically consistent picture of fu-
ture climate, including changes in climate vari-
ability and the occurrence of such various
weather phenomena as extreme events. In prac-
tice, this is rarely done for applications like

those presented below because of simulation bi-
ases and the coarse spatial resolution of typical
global simulations. Although the use of climate
projections for impacts is beyond the scope of
this report, aspects of the methodology for using
the projections are based on the models’ abili-
ties to simulate observed climate. Employing
coarse-resolution global model output for re-
gional and local impact studies requires two ad-
ditional steps—downscaling, as discussed in
Chapter 3, and bias removal, or the adjustment
of future projections for known systematic
model errors, described in Chapters 2 and 5.



Chapter 7 - Example Applications of Climate Model ResultsThe U.S. Climate Change Science Program

92

7.1.1 Downscaling

Downscaling is required because of the limita-
tions of coarse spatial resolution in the global
models. In mountainous terrain, a set of model
values for a single grid box will represent con-
ditions at the mean elevation level of that grid
box. In reality, however, conditions at moun-
taintop and valley locations will be much dif-
ferent. Such processes as local snowpack
accumulation and melting cannot be studied ac-
curately with direct model output. Resolution
also limits the accuracy of representation of
small-scale processes. A prominent example is
precipitation. The occurrence of heavy down-
pours is an important climate feature for certain
impacts, but these events are often localized on
a scale smaller than a grid box. In many actual
situations, an area the size of a grid box may ex-
perience flooding rains at some points while
others receive no rain at all. As a result, grid-
box precipitation tends to be more frequent, and
the largest values typically are smaller than
those observed at the local scale. Chapter 3 cov-
ered both dynamical downscaling with nested
regional models and statistical downscaling
methods that include diverse techniques such as
weather generators, transfer functions, and
weather typing.

7.1.2 Bias Removal

A simple approach developed for bias removal
during the early days of climate change assess-
ments and still widely used today is sometimes
dubbed the “delta” method. Climate model out-
put is used to determine future change in cli-
mate with respect to the model’s present-day
climate, typically a difference for temperature
and a percentage change for precipitation. Then,
these changes are applied to observed historical
climate data for input to an impacts model. The
delta method assumes that future model biases
for both mean and variability will be the same
as those in present-day simulations. One highly
questionable consequence of this assumption is
that the future frequency and magnitude of ex-
treme weather events are the same relative to the
mean climate of the future as they are in pres-
ent-day climate. Other bias-removal methods
have been developed, but none are nearly so
widespread, or they are versions of the delta
method.

7.2 CALIFORNIA CLIMATE
CHANGE ASSESSMENTS

One of the most comprehensive uses of climate
model simulation output for applications is
overseen by the California Climate Change
Center. The center was established by a state
agency, the California Energy Commission
(CEC), through its Public Interest Energy Re-
search program (CEC 2006). The center wanted
to determine possible impacts of climate change
on California and utilized the CMIP3 model
simulation database as its starting point for cli-
mate change projections.

To generate future California scenarios, re-
searchers selected three climate models from
the CMIP3 multimodel archive: the National
Center for Atmospheric Research–U.S. Depart-
ment of Energy PCM, the NOAA GFDL
CM2.1, and the Hadley Centre HadCM3 (Hay-
hoe et al. 2004; Cayan et al. 2006). The models
were chosen in large part because of their abil-
ity to simulate both large-scale global climate
features and California’s multiple climatic re-
gions when simulations of the 20th Century were
compared with high-resolution observations. Of
particular importance was the correct simula-
tion of the state’s precipitation climatology, with
a pronounced wet season from November to
March, during which nearly all annual precipi-
tation falls. Further, these three models offered
a range of sensitivities, with transient climate
responses of 1.3 K for PCM, 1.5 K for CM2.1,
and 2.0 K for HadCM3. Following model se-
lection, projections from three scenarios with
low, medium, and high future greenhouse gas
emissions were chosen to span the range of pos-
sible future California climate states in the 21st

Century. The California scenarios employed a
statistical downscaling technique that, used ob-
servationally, derived probability density func-
tions for surface temperature and precipitation
to produce corrected model-simulated distribu-
tion functions (Cayan et al. 2006). Corrections
were then applied to future scenario simulation
results. Once the scenarios were generated, they
were used to quantify possible climate change
impacts on public health, water resources, agri-
culture, forests, and coastal regions (CEC
2006).



7.3 DRYLAND CROP YIELDS

The effects of weather and climate on crops are
complex. Despite the fact that many details of
weather interactions with plant physiology are
poorly understood, numerous realistic crop-
growth simulation models have been developed.
Current-generation crop models typically step
through the growth process with daily fre-
quency and use a number of meteorological
variables as input, typically maximum and min-
imum temperature, precipitation, solar radia-
tion, and potential evapotranspiration. A key
characteristic of these models is that they have
been developed for application at a single loca-
tion and have been validated based on point
data, including meteorological inputs. Thus,
their use in assessing climate change impacts on
crop yields confronts a mismatch between the
spatially averaged climate model grid-box data
and the point data expected by crop models.
Also, biases in climate model data can have un-
known effects on crop model results because the
dependence of crop yields on meteorological
variables is highly nonlinear. The typical appli-
cation study circumvents these difficulties by
avoiding the direct use of climate model output.

The delta method continues to be a common ap-
proach in contemporary crop studies. In the U.S.
National Assessment of the Consequences of
Climate Variability and Change, monthly
changes (model future – model control) were
applied to observed data, and a weather gener-
ator was used to produce daily weather data for
input to impacts models. For example, Winkler
et al. (2002) found a longer growing season and
greater seasonal heat accumulation in fruit-
growing regions of the Great Lakes but uncer-
tainty about future susceptibility to freezes.
Olesen et al. (2007) investigated the potential
impacts of climate change on several European
crops. Crop models were driven by direct output
of regional climate models and also baseline
(present-day) observed daily climate data ad-
justed by GCM changes using the delta method.
Thomson et al. (2005) adjusted current daily cli-
mate data with monthly change values derived
from GCM projections (Smith et al. 2005) and
then used them as input to models to study fu-
ture yields of dryland crops in the United States.
National yield changes were found to be up to ±
25%, depending on the climate scenario. These

applications of the delta method produce daily
climate unchanged in many respects from pres-
ent-day observed data. The number of precipi-
tation days and the time between them remains
the same. Also, relative changes in intensity are
the same for light and heavy days. Likewise, the
length of extended periods of extreme heat and
cold and the intensity of such extremes with re-
spect to the new climate mean do not change.

In a recent study, Zhang (2005) used statistical
downscaling to estimate Oklahoma wheat yields
for a future simulation from HadCM3. In this
study, mean monthly changes of the means and
variances of temperature and precipitation be-
tween the HadCM3 control and future simula-
tions were used to adjust the parameters of a
weather generator model. Weather generator pa-
rameters include mean precipitation, precipita-
tion variance, the probability of a wet day
following a wet day, the probability of a dry day
following a wet day, mean temperature, and
temperature variance. The observed data were
used to determine a relationship between the
wet-wet and wet-dry day probabilities and total
monthly precipitation. This relationship was
used to assign future values of those probabili-
ties based on the GCM-simulated precipitation
changes. With the new set of parameters, the
weather generator simulated multiple years of
daily weather variables for input to the yield
model. This approach is logical and consistent
and produces different variability characteris-
tics depending on whether future climate is wet-
ter or drier than the present, unlike the simple
delta method applied to daily climate data.
However, these changes are assumed to be sim-
ilar to what occurs in the present-day climate
between wet and dry periods. Thus, more subtle
climate model–simulated changes that might af-
fect yields (e.g., a change to longer wet and dry
spells without a change in total precipitation)
are not transmitted.

7.4 SMALL WATERSHED
FLOODING

This application faces many of the same issues
as applying model output to estimate changes
in dryland crop yields. For example, models
used for simulating runoff in small watersheds
have been validated using point station data. In
addition, runoff is a highly nonlinear function
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of precipitation, and flooding occurrence is par-
ticularly sensitive to the exact frequency and
amount of precipitation for the most extreme
events. As noted in the “Extreme Events” sec-
tion of Chapter 5, climate models often under-
estimate the magnitude of extremes. Again, the
delta method is frequently applied to estimate
the changes in flooding that may result from
global climate change. Recently, Cameron
(2006) determined percentage changes in pre-
cipitation from climate model simulations and
applied them to a stochastic rainfall model to
produce precipitation time series for input to a
hydrologic model. Flood magnitudes were esti-
mated for return periods of 10 to 200 years and
for several climate changes scenarios. In most
cases, flood flows increased, but one scenario
produced a decrease.

Dibike and Coulibaly (2005) applied two statis-
tical downscaling techniques to an analysis of
flow on a small watershed in northern Quebec.
One technique used the model of Wilby, Daw-
son, and Barrow (2002) to identify a set of
large-scale variables (i.e., pressure, flow, tem-
perature, and humidity) related to surface tem-
perature and precipitation in the watershed. The
resulting statistical relationships were applied
to the output of a Canadian GCM climate
change simulation to generate future surface
temperature and precipitation time series. The
second technique used a weather generator re-
quiring various statistical parameters, estimated
by comparing surface temperature and precipi-
tation data between GCM control and future
scenario simulations. The fundamental differ-
ence between these two statistical downscaling
techniques is that the Wilby, Dawson, and Bar-
row (2002) model uses a more complete set of
atmospheric data from the GCM output data
while the weather generator uses only surface
temperature and precipitation. The resulting
time series from both methods provided input
for a hydrologic model. In both cases, peak
flows are higher in the spring and lower in the
early summer in future warmer climates, re-
flecting changes in snowmelt timing. A major
difference is that the Wilby, Dawson, and Bar-
row (2002) model produces a trend of increas-
ing daily precipitation not seen in the weather
generator data, resulting in larger spring in-
creases in peak flow.

7.5 URBAN HEAT WAVES

This estimation of changes in heat-wave fre-
quency and intensity can be accomplished using
only near-surface temperature. Because heat
waves are large-scale phenomena and near-sur-
face temperature is rather highly correlated over
the scales of GCM grid-boxes, downscaling is
not usually required for their analysis. Biases,
while remaining an issue, can be accounted for
by using percentile-based definitions of heat
waves. Meehl and Tebaldi (2004) used output
from the PCM for 2080 to 2099 to calculate per-
centile-based measures of extreme heat; they
found that heat waves will increase in intensity,
frequency, and duration. If mortality estimates
are desired, then biases are an issue because ex-
isting models (Kalkstein and Greene 1997) used
location-specific absolute magnitudes of tem-
perature to estimate mortality.

7.6 WATER RESOURCES IN THE
WESTERN UNITED STATES

The possibility that climate change may ad-
versely affect limited water resources in the
mostly arid and semiarid western United States
poses a threat to the prosperity of that region. A
group of university and government scientists,
under the auspices of the U.S Department of En-
ergy–sponsored Accelerated Climate Prediction
Initiative Pilot Project, conducted a coordinated
set of studies that represented an end-to-end as-
sessment of this issue (Barnett et al. 2004). This
project is noteworthy because of close coordi-
nation between production of GCM simulations
and the needs of impacts modeling. It also is a
good example of more-sophisticated downscal-
ing approaches.

A suite of carefully selected PCM climate sim-
ulations was executed (Dai et al. 2004; Pierce
2004) and then used to drive a regional climate
model to provide higher-resolution data (Leung
et al. 2004), both for direct assessment of effects
on water resources and for use in impacts mod-
els. A careful statistical downscaling approach
(Wood et al. 2004) also was used to produce an
alternate dataset for input to impacts models.
Using the observationally based 1/8° latitude-
by-longitude resolution gridded dataset devel-
oped by Maurer et al. (2002), an empirical
mapping function was developed to relate quan-
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tiles of the simulated monthly temperature and
precipitation frequency distributions from con-
trol runs to the observed climatological monthly
distributions at the GCM grid scale. This em-
pirical mapping was then applied to simulated
future monthly temperature and precipitation
data and spatially disaggregated to the 1/8° res-
olution grid through a procedure that added
small-scale structure. Daily time series of future
climate on the 1/8° grid subsequently were pro-
duced by randomly sampling from historical
data and adding in the changes resulting from
the empirical mapping and disaggregation.

The daily time series were used in a set of stud-
ies to assess water resource impacts (Stewart,
Cayan, and Dettinger 2004; Payne et al. 2004;
VanRheenen et al. 2004; Christensen et al.
2004). The studies, which assumed the IPCC
business-as-usual emissions scenario for the cli-
mate change GCM simulation, indicate that
warmer temperatures will melt the snowpack
about a month earlier throughout western North
America by the end of the 21st Century. The
shift in snowmelt will decrease flows and in-
crease competition for water during the summer
in the Columbia River Basin (Payne et al. 2004).
In the Sacramento River and San Joaquin River
basins, the average April 1 snowpack is pro-
jected to decrease by half. In the Colorado River
basin, a decrease in total precipitation would
mean that total system demand would exceed
river inflows.
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